K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

\(4x^2-4x+1+9y^2-6y+1+16z^2-8z+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(3y-1\right)^2+\left(4z-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\x=\frac{1}{4}\end{cases}}\)

vay ................................................

1 tháng 8 2019

Ta có : 

4x+ 9y2 + 16z- 4x - 6y - 8z + 3 = 0

( 2x )  + ( 3y)2 + ( 4z)2 - 4x - 6y - 8z + 3 = 0

\([\left(2x\right)^2-2.2x+1]+[\left(3y\right)^2-2.3y+1]+[\left(4z\right)^2-2.4z+1]=0\)=0

( 2x-1) + ( 3y -1 )2 + ( 4z - 1) 2 = 0

Mà ( 2x-1)\(\ge\)0 với mọi x

     ( 3y-1 )2 \(\ge0\)với mọi y

      ( 4z - 1) \(\ge0\)với mọi z 

 nên \(\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\z=\frac{1}{4}\end{cases}}}\)

 Vậy x = 1/2 ; y = 1/3 ; z = 1/4 

NV
12 tháng 9 2021

\(\Leftrightarrow\left(x^2-6xy+9y^2\right)+\left(x^2+6x+9\right)+\left(z^2-8z+16\right)=0\)

\(\Leftrightarrow\left(x-3y\right)^2+\left(x+3\right)^2+\left(z-4\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\x+3=0\\z-4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\\z=4\end{matrix}\right.\)

\(4x^2-4x+9y^2-6y+16z^2-8z+3=0\) 

\(\left(4x^2-4x+1\right)+\left(9y^2-6y+1\right)+\left(16z^2-8y+1\right)=0\) 

\(\left(2x-1\right)^2+\left(3y-1\right)^2+\left(4z-1\right)^2=0\) 

\(=>\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y-1\right)^2=0\\\left(4z-1\right)^2=0\end{cases}=>\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}=>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\z=\frac{1}{4}\end{cases}}}}\)

Vậy...

15 tháng 10 2021

Nhanh nha 

 

15 tháng 10 2021

mọi người giúp với

 

3 tháng 7 2021

\(4x^2-4x+1+9y^2-6y+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(3y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\3y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)

3 tháng 7 2021

Ta có:4x2-4x+9y2-6y+2=0

   <=>(4x2-4x+1)+(9y2-6y+1)=0

   <=> (2x-1)2+(3y-1)2=0

   \(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\3y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)

31 tháng 12 2021

BCNN(4;6;8)=24

=> 4x/24=6y/24=8z/24

=>x/6=y/4=z/3

áp dụng... ta đc:

x/6=y/4=z/3=x+y+z/6+4+3=13/13=1

=> x=6 

y=4

z=3

7 tháng 10 2020

\(4x=6y=8z\)

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Đặt \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=k\)

\(\left\{{}\begin{matrix}x=6k\\y=4k\\z=3k\end{matrix}\right.\)

\(x-y=z=2k\)

\(3k=2k\)

=> k = 0

=> \(x=y=z=0\)

Đề có sai hog ta? tại thử áp dụng r cũng ra vậy à :v

7 tháng 10 2020

thank kiu nhìu nhá ;))

AH
Akai Haruma
Giáo viên
3 tháng 3 2017

Bài này chị chắc chắn là thiếu đề.

Cho \(x=y=z=0\Rightarrow xy+yz+xz=0\)

Cho \(x=0,y=\frac{\sqrt{0,5}+1}{3},z=\frac{\sqrt{1,5}+1}{4}\Rightarrow xy+yz+xz=0,316...\)

Nghĩa là có vô số giá trị của $xy+yz+xz$

Còn ý tưởng của em có lẽ đúng rồi. Hầu như luôn đưa về tổng bình phương và dùng BĐT để đánh giá.

3 tháng 3 2017

\(4x^2+9y^2+16z^2-4x-6y-8z=0\)

\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(9y^2-6y+1\right)+\left(16z^2-8z+1\right)-3=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(3y-1\right)^2+\left(4z-1\right)^2-3=0\)

Akai Haruma, em tách thế này, xong đến đây là "ngậm" luôn @@ em không biết làm thế nào cả ạ ==' hay là bấm máy tính pt bậc 2 ạ ??

24 tháng 7 2019

Theo bài ra ta có:

\(4x=6y=8z\)và \(x-y=2\)

\(\Rightarrow4x.\frac{1}{24}=6y.\frac{1}{24}=8z.\frac{1}{24}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x-y}{6-4}=\frac{2}{2}=1\)

\(\Rightarrow\hept{\begin{cases}x=1.6=6\\y=1.4=4\\z=1.3=3\end{cases}}\)

VẬY \(\hept{\begin{cases}x=6\\y=4\\z=3\end{cases}}\)

24 tháng 7 2019

4/x=6/y=4-6/2=-2/2=-1

-> x = -4

y= -6

z = -8

cách trignh bày như các bài khác dạng này là đc

T.I.C.K GIÚP MK NHÉ!