9^4 nhân 81 nhân 2^3 nhân 3^2 viết ra dưới dạng một luỹ thừa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9^4.81.2^3.3^4\)
\(=\left(3^2\right)^4.3^4.2^3.3^4\)
\(=3^8.3^8.2^3\)
\(=3^{16}.2^3\)
Mk chỉ làm được đến đây thôi
3^6 . 9^5
= 3^6. \(^{\left(3^2\right)^5}\)
= 3^6. 3^10
=\(^{3^{6+10}}\)
= 3^16
k nhé ( dấu " ^" là đấu mũ)
a)\(\left(\frac{1}{5}\right)^{10}.5^{20}=\left(\frac{1}{5}\right)^{10}.5^{10.2}=\left(\frac{1}{5}\right)^{10}.25^{10}=\left(\frac{1}{5}.5\right)^{10}=1^{10}=1\)
b)\(5^2.3^5.\left(\frac{3}{5}\right)^2=\left(\frac{3}{5}.5\right)^2.3^5=3^2.3^5=3^7\)
c)\(\left(\frac{1}{16}\right)^3:\left(\frac{1}{8}\right)^2=\left(\frac{1}{8}\right)^{2.3}:\left(\frac{1}{8}\right)^2=\left(\frac{1}{8}\right)^{6+2}=\left(\frac{1}{8}\right)^8\)
\(a.\left(\frac{1}{5}\right)^{10}.5^{20}=\left(\frac{1}{5}\right)^{10}.5^{10.2}=\left(\frac{1}{5}\right)^{10}.\left(5^2\right)^{10}=\left(\frac{1}{5}\right)^{10}.25^{10}=\left(\frac{1}{5}.25\right)^{10}=5^{10}.\)
\(b.5^2.3^5.\left(\frac{3}{5}\right)^2=\left[5^2.\left(\frac{3}{5}\right)^2\right].3^5=\left(5.\frac{3}{5}\right)^2.3^5=3^2.3^5=3^7\)\(c.\left(\frac{1}{16}\right)^3:\left(\frac{1}{8}\right)^2=\left[\left(\frac{1}{4}\right)^2\right]^3:\left[\left(\frac{1}{2}\right)^3\right]^2=\left(\frac{1}{4}\right)^6:\left(\frac{1}{2}\right)^6=\left(\frac{1}{4}:\frac{1}{2}\right)^6=\left(\frac{1}{2}\right)^6\)
a, \(8^4.16^5\)
b, \(5^{40}.125^2.25^3\)
c,\(27^4.81^{10}\)
d, \(10^3.100^5.1000^4\)
Bạn ơi mình hỏi là viết các tích của số đó chứ ko phải là ghi ra như vậy
Có tất cả SSH là:(2017-1)+1=2017
Ta có tính chất: \(a^m.a^n=a^{m+n}\)
Vậy tổng ở phần số mũ là:(2017+1).2017:2=2035153.
Vậy biểu thức này ở dưới dạng lũy thừa là:x2035153
Bạn k cho mình nha
\(2^3\cdot2^2\cdot2^x\cdot x^5\cdot=2^{5+x}\cdot x^5\)
\(10^2\cdot2^{10}\cdot10^3\cdot10^5=10^{10}\cdot2^{10}=2^{10}\cdot5^{10}\cdot2^{10}=4^{10}\cdot5^{10}=20^{10}\)
\(a^3\cdot a^2\cdot a^5=a^{3+2+5}=a^{10}\)
P/s: Mình chỉ hiểu ý bạn như này!
\(9^4\times81\times2^3\times3^2=9^4\times9^2\times9\times8=9^{1+2+4}\times8=9^7\times8\)
\(9^4.81.2^3.3^2\)
\(=9^4.9^2.8.9\)
\(=9^7.8\)