Bài 1: CHo hình thang ABCD có cạnh đáy nhỏ AB bằng cạnh bên AD.Chứng minh CA là phân giác góc C.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì ABCD là hình thang cân nên ta có AD=BC(hai cạnh bên)
mà theo bài ra AB=AD => AB=AD=BC
=> tam giác ABC cân tại B => góc BAC= góc BCA(hai góc đáy)
mặt khác ta có góc BAC = góc ACD ( so le trong)
=> góc BCA = góc ADC => CA là tia phân giác góc C
bn làm đúng, nhưng trình bày chưa sắc nét, làm dc như bn là quí lắm rùi,mk đúng cho bn
Vì ABCD là hình thang cân(gt)
=>AD=BC mà AD=AB(gt)
=>BC=AB=> tam giác ABC cân tại B(Đlí)
=>góc BAC = góc BCA (Đlí) mà góc BAC = góc ACD(AB//CD)
=>góc BCA = gócACD
=> ac là phân giác của gócC
Theo bài ra ta có tứ giác ANCD là hình thang cân
=> AD = BC
Mà AB = AD
=> AD = BC = AB
=> tam giác ABC có AB = Bc=> ABC là tam giác cân
=> góc BAC = góc BCA (1)
Vì AB//CD => góc BAC = góc ACD (2)
Từ (1) và (2)
=> góc BCA = góc ACD
=> AC là đường phân giác của góc C
=> đpcm
2) a) Kẻ BN vuông AD , BM vuông CD
Xét tam giác vuông BNA và BMD ta có :
AB = BC ; góc BNA = \(180^o-\widehat{BAD}=70^o\)nên góc BAN = BCD = \(70^o\)
\(\Rightarrow\)tam giác BMD = tam giác BND ( cạnh huyền - góc nhọn )
\(\Rightarrow\)\(BN=BM\Rightarrow BD\)là tia phân giác của góc D
b) Nối B với D do AB = AD nên tam giác ABD cân tại A khi đó góc ADB = ( \(180^o-110^o\)) : 2= \(35^o\)
\(\Rightarrow\widehat{ADC}=70^o\)
do góc ADC + góc BAD = \(180^o\Rightarrow\)AB// CD
Và góc BCD = góc ADC= \(70^o\)
Suy ra ABC là hình thang cân
Ta có:
AB = AD (gt)
AD = BC (tính chất hình thang cân)
⇒ AB = BC do đó ΔABC cân tại B
⇒ ∠ BAC = ∠ BCA (tính chất tam giác cân) (*)
ABCD là hình thang có đáy là AB nên AB // CD
∠ BAC = ∠ DCA (hai góc so le trong) (**)
Từ (*) và (**) suy ra: ∠ BCA = ∠ DCA (cùng bằng ∠ BAC)
Vậy CA là tia phân giác của ∠ BCD.
Ta có: AB=AD
mà AD=BC
nên BA=BC
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{BCA}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
Ta có: \(AB = AD\)
Mà \(AD = BC\) (ABCD là hình thang cân)
\(\Rightarrow AB=BC\)
Nối A và C
Ta có: \(AB=BC\Rightarrow\Delta ABC\) là \(\Delta\) cân \(\Rightarrow\widehat{BAC}=\widehat{BCA}\) (1)
Ta lại có: AB // CD (ABCD là hình tang cân)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}\) ( cặp góc so le trong) (2)
Từ (1) và (2) \(\Rightarrow\widehat{BCA}=\widehat{ACD}\Rightarrow CA\) là phân giác của \(\widehat{C}\) (ĐPCM)