Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Có nhiều cách nhé. Với lớp 9 cô dùng cách này. Cô hướng dẫn nhé :)
Giả thiệt cho như hình vẽ. Gỉa sử AB = 1cm, khi đó do góc ADB = 30độ nên \(\frac{AB}{BD}=\frac{1}{2};\frac{AB}{AD}=\frac{\sqrt{3}}{3}\)
Vậy \(AC=AD+DC=AD+DB=2+\sqrt{3}\)
Vậy \(tan15=\frac{AB}{AC}=\frac{1}{2+\sqrt{3}}=2-\sqrt{3}\)
b. Dựa vào công thức : \(tan^215+1=\frac{1}{cos^215}\)
a) Đầu tiên bạn tự đi chứng minh hai công thức sau, do quá dài nên bạn có thể lên mạng tham khảo cách chứng minh:
\(\sin2a=2\sin a.\cos a\)
\(cos2a=cos^2a-sin^2a\)
Áp dụng hai công thức trên ta có:
\(sin30^o=2sin15^ocos15^o\Leftrightarrow sin15^ocos15^o=\frac{1}{4}\Leftrightarrow cos15^o=\frac{1}{4sin15^o}\)
\(cos30^o=cos^215^o-sin^215^o\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}=cos^215^o-sin^215^o\)
\(\Leftrightarrow\left(\frac{1}{4sin^215^o}\right)^2-sin^215^o=\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow\frac{1}{16sin^415^o}-sin^215^o=\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow-32sin^415^o-16sin^215^o\sqrt{3}+2=0\)
\(\Leftrightarrow sin^215^o=\frac{2-\sqrt{3}}{4}\left(sin^215^o\ge0\right)\)
\(\Leftrightarrow sin15^o=\sqrt{\frac{2-\sqrt{3}}{4}}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{4\sqrt{2}}}=\frac{\sqrt{3}-1}{2\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{4}\left(đpcm\right)\)
\(0< 15^0< 90^0\Rightarrow sin,cos,tan\) đều dương
\(cos15=\sqrt{1-sin^215}=\sqrt{1-\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^2}=\frac{\sqrt{6}+\sqrt{2}}{4}\)
\(tan15=\frac{sin15}{cos15}=2+\sqrt{3}\)
\(cot15=\frac{1}{tan15}=2-\sqrt{3}\)
a) \(9=6+3=6+\sqrt{9}\)
\(6+2\sqrt{2}=6+\sqrt{8}\)
\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)
c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)
\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)
\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)
\(2^2=14-10=14-\sqrt{100}\)
\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)
\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)
Ta có: \(12>9\)
\(6\sqrt{3}>4\sqrt{5}\)
Do đó: \(12+6\sqrt{3}>9+4\sqrt{5}\)
\(\Leftrightarrow\sqrt{12+6\sqrt{3}}>\sqrt{9+4\sqrt{5}}\)