biết số tự nhiên a chia cho 5 dư 4. Chúng minh: a^2 chia 5 dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
Gọi số có dạng 5k + 4
Ta có: (5k + 4)2 = 25k2 + 16 = 5 x 5 x (k2 + 3) + 1
Vậy chia 5 dư 1
Ta co:
\(a=5n+4\)
\(\Rightarrow a^2=\left(5n+4\right)^2=25n^2+40n+16\)
cai này chia 5 dư 1
Theo đề, a chia 5 dư 4 => a = 5k + 4 (k thuộc N)
Vì hai số đều là các số tự nhiên
Bình phương hai vế ta được: a2 = (5k + 4)2 = (5k)2+2.5k.4+42 = 25k2 + 40k + 16
Vì 25k2 chia hết cho 5
40k chia hết cho 5
Mà 16 chia 5 dư 1
Vậy 25k2 + 40k + 16 chia 5 dư 1
=> ĐPCM
a chia 5 dư 4=>a=5k+4
=>a2=(5k+4)(5k+4)
=(5k+4)5k+4(5k+4)
=(5k+4)5k+5.4k+3.5+1 chia 5 dư 1
=>đpcm
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
Vì a chia 5 dư 4 nên coi a = 5k + 4 (\(k\in Z\))
\(\Rightarrow a^2=\left(5k+4\right)^2=\left(5k+4\right)\left(5k+4\right)\)
\(=25k^2+16+40k\)
\(=5\left(5k^2\right)+5\left(8k\right)+5.3+1\)
\(=5\left(5k^2+8k+3\right)+1\)chia 5 dư 1.
Gọi a=5k+4
Ta có a^2=(5k+4)^2=25k^2+40k+16=5(5k^2+8k+3)+1. Vậy a^2 chia 5 dư 1 nếu a chia 5 dư 4
biết số tự nhiên a chia cho 5 du 4. chứng minh a^2 chia 5 dư 1