K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2015

Gọi a=5k+4

Ta có a^2=(5k+4)^2=25k^2+40k+16=5(5k^2+8k+3)+1. Vậy a^2 chia 5 dư 1 nếu a chia 5 dư 4

23 tháng 6 2017

biết số tự nhiên a chia cho 5 du 4. chứng minh a^2 chia 5 dư 1

12 tháng 7 2019

a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)

Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)

                \(=3\left(mn+2m+n\right)+2\)

Vậy ab chia 3 dư 2 .

b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)

Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)

Vậy \(a^2\) chia 5 dư 1 .

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

27 tháng 8 2015

Gọi số có dạng 5k + 4

Ta có: (5k + 4)2 = 25k2 + 16 = 5 x 5 x (k2 + 3) + 1

Vậy chia 5 dư 1

11 tháng 9 2018

Ta co:

\(a=5n+4\)

\(\Rightarrow a^2=\left(5n+4\right)^2=25n^2+40n+16\)

cai này chia 5 dư 1

11 tháng 9 2018

Theo đề, a chia 5 dư 4 => a = 5k + 4 (k thuộc N)

Vì hai số đều là các số tự nhiên

Bình phương hai vế ta được: a2 = (5k + 4)2 = (5k)2+2.5k.4+42 =  25k2 + 40k + 16

Vì 25k2 chia hết cho 5

     40k chia hết cho 5

Mà 16 chia 5 dư 1

Vậy 25k2 + 40k + 16 chia 5 dư 1

=> ĐPCM

a chia 5 dư 4=>a=5k+4

=>a2=(5k+4)(5k+4)

=(5k+4)5k+4(5k+4)

=(5k+4)5k+5.4k+3.5+1 chia 5 dư 1

=>đpcm

16 tháng 7 2018

Tại sao là a^2=(5k+4)*(5k+4)

Vì sao là ra cái đó bạn

5 tháng 7 2015

1) a chia 6 dư 2 => a= 6k+2

b chia 6 dư 3 => b= 6k+3

=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6 

2) a= 5k+2; b=5k+3

=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)

=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1

=> ab chia 5 dư 1

1 tháng 7 2016

Vì a chia 5 dư 4 nên coi a = 5k + 4 (\(k\in Z\))

\(\Rightarrow a^2=\left(5k+4\right)^2=\left(5k+4\right)\left(5k+4\right)\)

\(=25k^2+16+40k\)

\(=5\left(5k^2\right)+5\left(8k\right)+5.3+1\)

\(=5\left(5k^2+8k+3\right)+1\)chia 5 dư 1.