HELP MEEEE !! GIÚP MÌNH !!!
Cho ΔBC cân tại A ( Â<40°) có BM, CN là 2 đường phân giác của ΔABC
A) chứng minh BCMN là hình thang cân
B) BE, CF là 2 đường cao của ΔABC. Chứng minh EMNF là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo :P http://lazi.vn/edu/exercise/cho-tam-giac-abc-can-tai-a-a-40-co-bm-cn-la-2-duong-phan-giac-chung-minh-bcmn-la-hinh-thang-can
vì tam giác ABC cân tại A (gt)
góc ABC=gócACB
=>\(\frac{ABC}{2}\)=\(\frac{ACB}{2}\)
=>\(\widehat{B_1}\)=\(\widehat{B_2}\)=\(\widehat{C_1}\)=\(\widehat{C_2}\)
(vì CN là phân giác \(\widehat{ACB}\):BM là phân giác \(\widehat{ABC}\))
xét tam giác ABM và tam giác ACN có
\(\widehat{B_1}\)=\(\widehat{C_1}\)
 chung
AB=AC(2 cạnh bên)
Do đó tam giác ABM=tam giác ACN(g.c.g)
=>AN=AM
=>tam giác AMN cân tại A
phần a thui mik nghĩ 2 phần còn lại đã
ΔACK vuông tại C có CI vuông góc AK
nên AK*AI=AC^2
ΔCAB vuông tại C có CO là đường cao
nên AO*AB=AC^2=AK*AI
a) Xét ▲ABD và ▲ACD có:
\(\widehat{BAD}=\widehat{CAD}\) (AD là đường phân giác của \(\widehat{BAC}\))
AB=AC (▲ABC cân tại A).
AD là cạnh chung.
=>▲ABD = ▲ACD (c-g-c)
=> BD=CD (2 cạnh tương ứng) hay D là trung điểm BC. (1)
\(\widehat{ADB}=\widehat{ADC}\) (2 góc tương ứng)
Mà \(\widehat{ADB}+\widehat{ADC}=180^0\) (kề bù)
=>\(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>AD⊥BC tại D (2)
- Từ (1) và (2) suy ra: AD là đường trung trực của BC.
b) Xét ▲AIF và ▲AIE có:
\(\widehat{FAI}=\stackrel\frown{EAI}\) (AI là đường phân giác của \(\widehat{FAE}\) )
AF=AE (gt)
AI là cạnh chung.
=>▲AIF = ▲AIE (c-g-c)
=>\(\widehat{AFI}=\widehat{AEI}\) (2 góc tương ứng)
Mà\(\widehat{AEI}=90^0\)(BE⊥AC tại E)
=>\(\widehat{AFI}=90^0\) hay IF⊥AB tại F.
c) Xét ▲ABC có:
AD là đường cao (AD⊥BC tại I)
BE là đường cao (BE⊥AC tại E)
AD cắt BE tại I (gt)
=> I là trực tâm của ▲ABC.
=>CI⊥AB mà IF⊥AB (cmt)
=>CI trùng với IF hay C,I,F thẳng hàng.
a)Ta có: tam giác ABC là tam giác cân tại A.
=> góc B= góc C
Vì BD và CE là phân giác góc B và C
=> góc DBC = góc EBD = góc DCE = góc ECB
Xét tam giác EBC và tam giác DBC có:
góc ECB = góc DBC
góc BCD = góc EBC
Chung cạnh BC
=> tam giác EBC = tam giác DCB( g.c.g)
=> EC = DB
=> tứ giác BECD là hình thang cân (vì có 2 đường chéo bằng nhau)
b) mk chưa biết làm
a)Gợi ý:
Đầu tiên bạn chứng minh BEDC là hình thang, sau đó chứng minh nó là hình thang cân.
Ta có:
góc B = (1800 - Â) : 2
rồi chứng minh tam giác EAD cân tại A, sau đó => góc AED = góc B = (1800 - Â) : 2
=> ED // BC (2 góc đồng vị)
=> BECD là hình thang (2 cạnh đối song song với nhau)
mà góc B = góc C (tam giác ABC cân tại A)
=> BECD là hình thang cân (2 góc kề 1 đáy bằng nhau)
bài b thì mk chưa học
The main charater is a girl named Tam, her life was full of sorrow and misery but at the end she had found the happiness in her life. She was motherless, and after her father was gone, she lived with sterpmother's control.
With the god's help. Tam became the Queen but her sterpmother did not leave her alone. She tried to kill Tam and had some successful time. But finnally Tam came back to her life. Meanwhile, the King found Tam was not died and took her home. And this time, she fought back to her stepmother. Afterall, her stepmother and her sterpmother's daughter died.
lên mạng search á bạn
rồi lọc ra những ý hay, súc tích rồi ghép vô bài văn của bạn
Chúc bạn học tốt !!!
a: góc B=góc C=(180-80)/2=50 độ
b: góc A=180-2*65=50 độ