K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền BA

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền CA

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: Ta có: \(AD\cdot AB=AE\cdot AC\)

nên \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Do đó: ΔADE\(\sim\)ΔACB

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB

13 tháng 11 2021

a: BC=8cm

\(\widehat{C}=30^0\)

\(\widehat{B}=60^0\)

a: Xét tứ giác AEHD có \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)

nên AEHD là hình chữ nhật

Suy ra: EH//AD; EH=AD: EA//HD; EA=HD

b: Vì AEHD là hình chữ nhật

nên AH=DE

c: Ta có: AEHD là hình chữ nhật

mà O là giao của hai đường chéo

nên OA=OE=OD=OH