K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

a, \(\frac{x+2}{5}=\frac{1}{x-2}\Rightarrow\left(x+2\right)\left(x-2\right)=5\Rightarrow x^2-2x+2x-4=5\Rightarrow x^2=9\Rightarrow x=\pm3\)

b, \(\frac{3}{x-4}=\frac{x+4}{3}\Rightarrow\left(x+4\right)\left(x-4\right)=9\Rightarrow x^2-4x+4x-16=9\Rightarrow x^2=25\Rightarrow x=\pm5\)

c, \(\frac{x+2}{2}=\frac{1}{1-x}\Rightarrow\left(x+2\right)\left(1-x\right)=2\Rightarrow x-x^2+2-2x=2\Rightarrow-x^2-x=0\Rightarrow-x\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

27 tháng 4 2022

a)

 loading...

b) \(\dfrac{x^2}{6}=\dfrac{24}{25}\)

\(\Leftrightarrow\left(5x\right)^2=144\)

\(\Leftrightarrow\left(5x\right)^2=12^2\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=12\\5x=-12\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{12}{5}\\x=-\dfrac{12}{5}\end{matrix}\right.\)

c) \(\dfrac{x-2}{x-1}=\dfrac{x+4}{x+7}\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x-1\right)\left(x+4\right)\)

\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)

\(\Leftrightarrow2x=10\)

\(\Leftrightarrow x=5\)

b: Để A là số nguyên thì \(2x+2⋮x+3\)

\(\Leftrightarrow x+3\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{-4;-1;-5;1;-7\right\}\)

19 tháng 2 2021

Tham khảo thanh này để soạn đề chính xác hơn nha :vvv

a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)

\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)

\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)

\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)

\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)

\(=\dfrac{-1}{\sqrt{x}-2}\)(1)

b) Ta có: \(x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)

Thay x=0 vào biểu thức (1), ta được:

\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)

Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)