Cho tam giác ABC vuông tại A, AB=3cm, AC=4cm. Gọi M là trung điểm của cạnh BC. Gọi d là đường thẳng qua M và vuông góc với BC, d cắt cạnh AC tại N. Tính độ dài MN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
Xét tg ABC vuông tại A
\(\Rightarrow AC^2+AB^2=BC^2\left(Pitago\right)\)
\(\Rightarrow BC^2=4^2+3^2\)
\(\Rightarrow BC^2=25\)
\(\Rightarrow BC=5\left(cm\right)\)
Vì M là trung điểm của BC
\(\Rightarrow BM=CM=\frac{BC}{2}=\frac{5}{2}=2,5\)
Xét tg CMN vuông tại M
\(\Rightarrow CM^2+MN^2=CN^2\left(Pitago\right)\)
\(\Rightarrow MN^2=4^2-2,5^2\)
\(\Rightarrow MN=\sqrt{9,75}\left(cm\right)\)
sosorry