K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

hình tự vẽ nhé:

 \(BC=BH+HC=16+81=97\)

Áp dụng hệ thức lượng ta có:

     \(AB^2=BH.BC\)

\(\Rightarrow\)\(AB^2=16.97=1552\)

\(\Rightarrow\)\(AB=\sqrt{1552}=4\sqrt{97}\)

    \(AC^2=HC.BC\)

\(\Rightarrow\)\(AC^2=81.97=7857\)

\(\Rightarrow\)\(AC=\sqrt{7857}=9\sqrt{97}\)

    \(AH.BC=AB.AC\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}\)

\(\Rightarrow\)\(AH=\frac{4\sqrt{97}.9\sqrt{97}}{97}=36\)

    \(AD.AB=AH^2\)

    \(AE.AC=AH^2\)

suy ra:  \(AD.AB=AE.AC\)

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AH^2=AE\cdot AB\left(2\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AH^2=AF\cdot AC\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AE\cdot AB=AF\cdot AC=BH\cdot HC\)

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

24 tháng 10 2021

b: \(DA\cdot DB+EA\cdot EC\)

\(=HD^2+HE^2\)

\(=AH^2=HB\cdot HC\)

30 tháng 12 2020

cho tam giác abc vuông tại A (AB<AC) ke Ah vuông với bc tại h trê cạnh ac lấy điểm d sao cho ad=ah gọi e là trung điểm của hd tia ae cắt bc tai f cm a) tam giác ahe= tam giác ade và ae vuông tại hd b) tam giác ahf = tam giác adf c) góc dfc= góc abc

27 tháng 10 2021

d