K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

\(=1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+...+\frac{1}{16}\cdot\frac{16.17}{2}\)

\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{17}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+...+\frac{17}{2}=\frac{1}{2}\left(2+3+...+17\right)=\frac{1}{2}\cdot\frac{16.19}{2}=4.19=76\)

9 tháng 5 2023

Q = 1+ \(\dfrac{1}{2}\) .(1+2)+ \(\dfrac{1}{3}\) . (1 + 2 + 3) +...+ \(\dfrac{1}{16}\) (1+2+3+...+16)

Q = = 1 + \(\dfrac{1}{2}\) .\(\dfrac{2.3}{2}\) + \(\dfrac{1}{3}\) .\(\dfrac{3.4}{2}\) +...+ \(\dfrac{1}{16}\)\(\dfrac{16.17}{2}\)

Q = \(\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{17}{2}\)

Q = \(\dfrac{1}{2}\left(3+4+...+17\right)\)

Q = 76

1 tháng 8 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}\)\

\(A=\frac{1}{2014}\)

9 tháng 4 2023

a) \(\dfrac{1}{3}+\dfrac{4}{3}\times\dfrac{1}{2}=\dfrac{1}{3}+\dfrac{4}{6}=\dfrac{1}{3}+\dfrac{2}{3}=\dfrac{3}{3}=1\)

b) \(\dfrac{3}{5}\times\dfrac{4}{7}:\dfrac{16}{21}=\dfrac{3}{5}\times\dfrac{4}{7}\times\dfrac{21}{16}=\dfrac{12}{35}\times\dfrac{21}{16}=\dfrac{252}{560}=\dfrac{9}{20}\)

AH
Akai Haruma
Giáo viên
4 tháng 8 2021

Bài 1 không có cơ sở để tính biểu thức.

AH
Akai Haruma
Giáo viên
4 tháng 8 2021

Bài 2:

a. 

$(6x+1)^2+(6x-1)^2-2(6x+1)(6x-1)$

$=[(6x+1)-(6x-1)]^2=2^2=4$

b.

$3(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$

$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$

$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)$

$=(2^8-1)(2^8+1)(2^{16}+1)$
$=(2^{16}-1)(2^{16}+1)=2^{32}-1$

c.

$2C=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^{16}+1)$

$=(5^4-1)(5^4+1)(5^8+1)(5^{16}+1)$

$=(5^8-1)(5^8+1)(5^{16}+1)$
$=(5^{16}-1)(5^{16}+1)=5^{32}-1$

$\Rightarrow C=\frac{5^{32}-1}{2}$