Tính giá trị biểu thức:
A=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/16(1+2+...+16)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q = 1+ \(\dfrac{1}{2}\) .(1+2)+ \(\dfrac{1}{3}\) . (1 + 2 + 3) +...+ \(\dfrac{1}{16}\) (1+2+3+...+16)
Q = = 1 + \(\dfrac{1}{2}\) .\(\dfrac{2.3}{2}\) + \(\dfrac{1}{3}\) .\(\dfrac{3.4}{2}\) +...+ \(\dfrac{1}{16}\). \(\dfrac{16.17}{2}\)
Q = \(\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{17}{2}\)
Q = \(\dfrac{1}{2}\left(3+4+...+17\right)\)
Q = 76
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}\)\
\(A=\frac{1}{2014}\)
a) \(\dfrac{1}{3}+\dfrac{4}{3}\times\dfrac{1}{2}=\dfrac{1}{3}+\dfrac{4}{6}=\dfrac{1}{3}+\dfrac{2}{3}=\dfrac{3}{3}=1\)
b) \(\dfrac{3}{5}\times\dfrac{4}{7}:\dfrac{16}{21}=\dfrac{3}{5}\times\dfrac{4}{7}\times\dfrac{21}{16}=\dfrac{12}{35}\times\dfrac{21}{16}=\dfrac{252}{560}=\dfrac{9}{20}\)
Bài 2:
a.
$(6x+1)^2+(6x-1)^2-2(6x+1)(6x-1)$
$=[(6x+1)-(6x-1)]^2=2^2=4$
b.
$3(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^8-1)(2^8+1)(2^{16}+1)$
$=(2^{16}-1)(2^{16}+1)=2^{32}-1$
c.
$2C=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^{16}+1)$
$=(5^4-1)(5^4+1)(5^8+1)(5^{16}+1)$
$=(5^8-1)(5^8+1)(5^{16}+1)$
$=(5^{16}-1)(5^{16}+1)=5^{32}-1$
$\Rightarrow C=\frac{5^{32}-1}{2}$
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)
\(=1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+...+\frac{1}{16}\cdot\frac{16.17}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{17}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+...+\frac{17}{2}=\frac{1}{2}\left(2+3+...+17\right)=\frac{1}{2}\cdot\frac{16.19}{2}=4.19=76\)