chờ a,b,c là các số thực dương và k \(\in\)N ; k\(\ge\)2
CM \(\frac{1}{a\left(a+b\right)^k}\)+\(\frac{1}{b\left(a+c\right)^k}\)+\(\frac{1}{c\left(a+b\right)^k}\)\(\ge\)\(\frac{3^{k+2}}{2^k\left(a+b+c\right)^{k+1}^{ }}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiền dùng AM-GM cm tổng 3 phân thức đầu >= 6
tổng 3 phân thức còn lại >= 3/2(bđt nesbit) .vậy là xong
bài này đùng Shinra nhé
ưu điểm của shinra : rất khó tìm ra lỗi sai , nếu vừa nói vừa làm thì có thể thầy cô cũng ko nhận ra :)
nhược điểm : nếu bị để ý kĩ thì SM luôn đấy :)
áp dụng BDT cô si ta có :
\(a+1+1\ge3\sqrt[3]{a}.\) tương tự với các mẫu còn lại
vì nó năm ở dưới mẫu dấu > thành dấu <
\(vt\le\frac{1}{3\sqrt[3]{a}}+\frac{1}{3\sqrt[3]{b}}+\frac{1}{3\sqrt[3]{c}}.\)
\(abc=1\Leftrightarrow a=\frac{1}{bc}\)
\(VT\le\frac{1}{\frac{3}{\sqrt[3]{bc}}}+\frac{1}{\frac{3}{\sqrt[3]{ac}}}+\frac{1}{\frac{3}{\sqrt[3]{ab}}}=\frac{\sqrt[3]{bc}+\sqrt[3]{ac}+\sqrt[3]{ab}}{3}\)
có \(a+b+C\ge3\sqrt[3]{abc}=3\) ( abc=1) ( nhớ kĩ cái này là chìa khóa để rứt điểm bài này ko được quên nha )
nhân cả tử cả mẫu cho 3 ta được
\(VT\le\frac{3\sqrt[3]{bc}+3\sqrt[3]{ac}+3\sqrt[3]{ab}}{9}\)
\(3\sqrt[3]{b.c.1}\le\left(b+c+1\right)\) tương tự với các số hạng còn lại ta được
đến đây ta dùng Shinra nhé
\(VT\le\frac{2\left(a+b+c\right)+3}{9}=\frac{6+3}{9}=1\)
k nguyên dương => \(k\ge1\)\(\Leftrightarrow\)\(a^k\ge a\)\(\Leftrightarrow\)\(\frac{a^k}{b+c}\ge\frac{a}{b+c}\)
Tương tự với 2 phân thức còn lại, cộng 3 bđt ta thu đc bđt Nesbit 3 ẩn => đpcm
áp dụng BĐT bunhia... ta có
\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\)
\(\Rightarrow a+2b\le3c\)
áp dụng cosi ta có
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
áp dụng BDT trên ta có \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(đpcm\right)\)
dấu = xảy ra khi a=b=c
log 1 a b a c 2 = - log a b a c 2
= - 1 n log a b + 2 log a c
Đáp án cần chọn là D
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)