Cho Ax, By là 2 tiếp tuyến song song của đường tròn (O) (A,B là các tiếp điểm)
a) Chứng minh rằng : AB là đường kính của đường tròn
b) 1 tiếp tuyến thứ 3 của (O) cắt Ax, By lần lượt tại M và N. Biết AM=3,2; BN=5. Tính bán kính của (O)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cây cam là:
120 : ( 2 + 3 ) x 2 = 48 (cây)
Số cây xoài là:
( 1 + 5 ) = 20 ( cây )
Số cây chanh là:
120 - ( 48 + 20 ) = 52 ( cây )
Đáp số : cam : 48 cây
xoài : 20 cây
chanh : 52 cây.
ai trên 10 điểm thì mình nha
a: Xét (O) co
CM,CA là tiếp tuyên
=>CM=CA
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB
CD=CM+MD
=>CD=CA+BD
b: Xet ΔACN và ΔDBN có
góc NAC=góc NDB
góc ANC=góc DNB
=>ΔACN đồng dạng vơi ΔDBN
=>AC/BD=AN/DN
=>CN/MD=AN/ND
=>MN/AC
a) Xét tứ giác AOMC có
\(\widehat{CAO}\) và \(\widehat{CMO}\) là hai góc đối
\(\widehat{CAO}+\widehat{CMO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AOMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Ta có: AOMC là tứ giác nội tiếp(cmt)
nên \(\widehat{MAO}=\widehat{OCM}\)(hai góc cùng nhìn cạnh OM)
hay \(\widehat{MAB}=\widehat{OCD}\)
Xét (O) có
CM là tiếp tuyến có M là tiếp điểm(Gt)
CA là tiếp tuyến có A là tiếp điểm(Gt)
Do đó: OC là tia phân giác của \(\widehat{AOM}\)(Tính chất hai tiếp tuyến cắt nhau)
\(\Leftrightarrow\widehat{AOM}=2\cdot\widehat{COM}\)
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm(gt)
DB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: OD là tia phân giác của \(\widehat{MOB}\)(Tính chất hai tiếp tuyến cắt nhau)
\(\Leftrightarrow\widehat{BOM}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)(hai góc kề bù)
mà \(\widehat{AOM}=2\cdot\widehat{COM}\)(cmt)
và \(\widehat{BOM}=2\cdot\widehat{MOD}\)(cmt)
nên \(2\cdot\widehat{COM}+2\cdot\widehat{MOD}=180^0\)
\(\Leftrightarrow\widehat{COM}+\widehat{MOD}=90^0\)
mà \(\widehat{COM}+\widehat{MOD}=\widehat{COD}\)(tia OM nằm giữa hai tia OC,OD)
nên \(\widehat{COD}=90^0\)
Xét ΔCOD có \(\widehat{COD}=90^0\)(cmt)
nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)
Xét (O) có
ΔMAB nội tiếp đường tròn(M,A,B∈(O))
AB là đường kính(gt)
Do đó: ΔMAB vuông tại M(Định lí)
Xét ΔAMB vuông tại M và ΔCOD vuông tại O có
\(\widehat{MAB}=\widehat{OCD}\)(cmt)
Do đó: ΔAMB∼ΔCOD(g-g)
⇔\(\dfrac{AM}{CO}=\dfrac{BM}{DO}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AM\cdot OD=BM\cdot OC\)(đpcm)
a) Xét (O) có
CM là tiếp tuyến có M là tiếp điểm(gt)
CA là tiếp tuyến có A là tiếp điểm(gt)
Do đó: CM=CA(Tính chất hai tiếp tuyến cắt nhau)
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm(gt)
DB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: DB=DM(Tính chất hai tiếp tuyến cắt nhau)
Ta có: CD=CM+DM(M nằm giữa C và D)
mà CM=CA(cmt)
và DM=DB(cmt)
nên CD=CA+DB
trên google có đầy rùi đăng lạm gì nữa