Tính nhanh:
5) 1/2 + 1/2^2 + 1/2^3 + 1/2^4 +...+ 1/2^100
6) 1/1.2.3 + 1/2.3.4 + ... + 1/48.49.50
7) -1/3 + 1/3^2 - 1/3^3 + ... + 1/3^100 - 1/3^101
8) 1/1.2.3 + 1/2.3.4 + ... + 1/37.38.39
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)
3A-A= \(1-\frac{1}{3^{2008}}\)
a) Ta có:
3A= \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\left(1\right)\)
A= \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\left(2\right)\)
Lấy (1) - (2) ta được:
1-\(\dfrac{1}{3^{100}}\)
b) Ta xét:
\(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{2}{1.2.3},...,\dfrac{1}{37.38}-\dfrac{1}{38.39}=\dfrac{2}{37.38.39}\)
Ta có:
2B=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+..+\dfrac{2}{37.38.39}\)
=\(\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)+\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+..+\left(\dfrac{1}{37.38}-\dfrac{1}{38.39}\right)\)
=\(\dfrac{1}{1.2}-\dfrac{1}{38.39}=\dfrac{740}{38.39}=\dfrac{370}{741}\)
Vậy \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+..+\dfrac{2}{37.38.39}\)
=\(\dfrac{370}{741}\)
Nếu bn cảm thấy mk đúng tick cho mk nhé!
câu b bài 2:
\(\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\)
\(=\dfrac{1}{5}\)
câu a bài 2:
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{10\cdot11\cdot12}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}-...-\dfrac{1}{12}\)
\(=1-\dfrac{1}{12}=\dfrac{11}{12}\)
a) \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
\(A=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{1.2}-\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{9900}\)
\(A=\frac{9898}{19800}.\)
Vậy :
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(A=\frac{9898}{19800}:2\)
\(A=\frac{4949}{19800}.\)
a) A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
A = \(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
A = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
A = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
A = \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
A = \(\frac{1}{2}.\frac{4949}{9900}\)
A = \(\frac{4949}{19800}\)
\(b,\)Đặt \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37\cdot38\cdot39}\)
\(B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{37.38\cdot38}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2B=\frac{1}{1.2}-\frac{1}{38.39}\)
\(\Rightarrow B=\frac{\left(\frac{1}{1.2}-\frac{1}{38.39}\right)}{2}=\frac{185}{741}\)
A=12+22+...+992
2A=22+32+...+1002
2A-A=(22+32+...+1002)-(12+22+...+992)
A=1002-12
A=10000-1
A=9999
5,Ta có
A=1/2+1/2^2+1/2^3+...+1/2^100
2A=1+1/2+1/2^2+1^2/3+...+1/2^99
2A-A=(1+1/2+1/2^2+1^2/3+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^100)
A=1-1/2^100