K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

a + b + c = 0

<=> (a + b + c)^2 = 0

<=> a^2 + b^2 + c^2 + 2(ab + bc + ca)  = 0

<=> a^2 + b^2 + c^2 = 0

<=> a = b = c = 0

=> Q = - 1 + 1 + 1 = 1

7 tháng 7 2018

bai nay de

2 tháng 3 2019

=3(a-b)(b-c)(c-a) nha bn

19 tháng 8 2018

Nhân khai triển tử và mẫu của B, thấy ab + bc + ca thì thay bằng 1

15 tháng 5 2016

ab có gạch đầu ko bn?

15 tháng 5 2016

Nếu ab là ab thì mk giải thế này:

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Leftrightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10c+a}{c+a}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10c+a}{c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}\)

\(=\frac{\left(10a+a\right)+\left(10b+b\right)+ \left(10c+c\right)}{\left(a+a\right)+\left(b+b\right)+\left(c+c\right)}=\frac{11a+11b+11c}{2a+2b+2c}=\frac{11\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{11}{2}\)

do đó: \(\frac{10a+b}{a+b}=\frac{11}{2}\Rightarrow\left(10a+b\right).2=11.\left(a+b\right)\Rightarrow20a+2b=11a+11b\)

\(\Rightarrow20a-11a=11b-2b\Rightarrow9a=9b\Rightarrow a=b\)

Tương tự với b=c;c=a

=>\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=0^3+0^3+0^3=0\)

21 tháng 3 2021

Dễ dàng chứng minh được: 

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với \(x,y>0\)(1)

Dấu bằng xảy ra \(\Leftrightarrow x=y>0\)

Ta có:

\(\frac{a}{bc\left(a+1\right)}=\frac{a}{abc+bc}=\frac{a}{ab+bc+ca+bc}=\frac{a}{\left(ab+bc\right)+\left(bc+ca\right)}\)

Áp dụng (1), ta được:

\(\frac{1}{ab+bc}+\frac{1}{bc+ca}\ge\frac{4}{\left(ab+bc\right)+\left(bc+ca\right)}\)

\(\Leftrightarrow\frac{1}{4\left(ab+bc\right)}+\frac{1}{4\left(bc+ca\right)}\ge\frac{1}{ab+bc+bc+ca}\)

\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{ab+bc+bc+ca}\)

\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{bc\left(a+1\right)}\left(2\right)\)

Dấu bằng xảy ra \(\Leftrightarrow b=c>0\)

Chúng minh tương tự, ta được:

\(\frac{b}{4}\left(\frac{1}{ab+ca}+\frac{1}{bc+ca}\right)\ge\frac{b}{ca\left(b+1\right)}\left(3\right)\)

Dấu bằng xảu ra \(\Leftrightarrow a=c>0\).

\(\frac{c}{4}\left(\frac{1}{ac+ab}+\frac{1}{ab+bc}\right)\ge\frac{c}{ab\left(c+1\right)}\left(4\right)\)

Từ (2), (3) và (4), ta được:

\(\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\le\)\(\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ac}\right)+\frac{b}{4}\left(\frac{1}{ac+bc}+\frac{1}{ac+ab}\right)\)\(+\frac{c}{4}\left(\frac{1}{ab+bc}+\frac{1}{ab+ac}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}.\left(\frac{a}{ab+bc}+\frac{c}{ab+bc}\right)+\frac{1}{4}\left(\frac{a}{bc+ac}+\frac{b}{bc+ac}\right)\)\(+\frac{1}{4}\left(\frac{b}{ab+ac}+\frac{c}{ab+ac}\right)\)

\(\Leftrightarrow P\le\frac{a+c}{4\left(ab+bc\right)}+\frac{a+b}{4\left(bc+ac\right)}+\frac{b+c}{4\left(ab+ac\right)}\)

\(\Leftrightarrow P\le\frac{a+c}{4b\left(a+c\right)}+\frac{a+b}{4c\left(a+b\right)}+\frac{b+c}{4a\left(b+c\right)}\)

\(\Leftrightarrow P\le\frac{1}{4b}+\frac{1}{4c}+\frac{1}{4a}\)

\(\Leftrightarrow P\le\frac{1}{4}\left(\frac{ab+bc+ca}{abc}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}.\frac{abc}{abc}=\frac{1}{4}.1=\frac{1}{4}\)( vì \(ab+bc+ca=abc\))

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=abc\end{cases}}\Leftrightarrow a=b=c=3\)

Vậy \(minP=\frac{1}{4}\Leftrightarrow a=b=c=3\)