So sánh :1/(1x2) + 1/(2x3) + ....... +1/(59x60) với 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1.2+2.3+...+59.60\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+...+59.60.\left(61-58\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+...+59.60.61-58.59.60\)
\(\Rightarrow3A=59.60.61\)
\(\Rightarrow A=\frac{59.60.61}{3}\)
Trả lời
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}< 1\)
Vậy \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}< 1\left(đpcm\right)\)
1/2x3+1/3x4+1/4x5+.......+1/57x58+1/58x59+1/59x60
1/2-1/3+1/3-1/4 +1/4 - 1/5 +... + 1/59-1/60
=1/2-1/60
=29/60
c, A= 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/100-1/101
A= 1-1/101
A= 100/101
Vậy A= 100/101
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}>1\)
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
1/1.2+1/2.3+1/3.4+...+1/59.60
=1-1/2+1/2-1/3+1/3-1/4+...+1/59-1/60
=1-1/60
=59/60
vì 1>59/60
=> 1>1/1.2+1/2.3+1/3.4+...+1/59.60
chúc bạn học tốt nha
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{59.60}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{59}-\frac{1}{60}\)
\(=1-\frac{1}{60}=\frac{59}{60}\)