K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

\(A=\frac{2x-1}{x+2}\)

Để A \(\in\)\(ℤ\)thì \(2x-1\) \(⋮\)\(x+2\) ; \(x+2\) \(\ne\)0; \(2x-1,x+2\inℤ\)

Ta có: \(2x-1=2\left(x+2\right)-5\)

Vì \(2\left(x+2\right)⋮x+2\)

nên để \(2x-1⋮x+2\)

thì \(5⋮x-2\)

=> \(x-2\in\left\{\pm1;\pm5\right\}\)

Ta có bảng sau:

\(x-2\)\(1\)\(-1\)\(5\)\(-5\)
\(x\)\(3\)\(1\)\(7\)\(-3\)

Vì \(x\inℤ\)=>\(x\in\left\{1;\pm3;7\right\}\)

Còn 2 ý còn lại làm tương tự như ý này

11 tháng 12 2017

bài 1 :

tự làm

31 tháng 5 2017

a) ĐKXĐ: \(\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b) bạn rút gọn, biểu thức sẽ bằng 4 

=> giá tri của biểu thức sẽ không phụ thuộc vào biến x

31 tháng 5 2017

tôi vướng ở câu b giải cứ bị lẫn giải ra vẫn có biến x giải họ tôi cái

30 tháng 11 2018

a) M xác định khi \(x+1\ne0\)

\(x^2+1\ne0\)

\(x^2+2x+1=\left(x+1\right)^2\ne0\)

\(\Leftrightarrow x\ne\pm1\)

b) \(M=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1}{x^2+2x+1}-\frac{1}{x^2-1}\right)\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1}{\left(x+1\right)^2}-\frac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}-\frac{1\left(x+1\right)^2}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\right)\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{\left[1\left(x^2-1\right)\right]-1\left(x+1\right)^2}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\right)\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}.\frac{x^2-1-1\left(x^2+2x+1\right)}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}.\frac{x^2-1-x^2-2x-1}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}.\frac{-2x-2}{\left(x+1\right)^2\left(x-1\right)\left(x+1\right)}\)

\(=\frac{1}{x+1}+\frac{\left(x-x^3\right)\left(-2x-2\right)}{\left(x^2+1\right)\left(x^2-1\right)\left(x+1\right)^2}\)\(=\frac{1}{x+1}+\frac{\left(x-x^3\right)\left(-2x-2\right)}{\left(x^4-1\right)\left(x+1\right)^2}\)

\(=\frac{1}{x+1}+\frac{-2\left(x-x^3\right)\left(x+1\right)}{\left(x^4-1\right)\left(x+1\right)^2}\)\(=\frac{1}{x+1}+\frac{-2\left(x-x^3\right)}{\left(x^4-1\right)\left(x+1\right)}\) 

\(=\frac{\left(x^4-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^4-1\right)\left(x+1\right)}+\frac{-2\left(x-x^3\right)\left(x+1\right)}{\left(x^4-1\right)\left(x+1\right)}\)

\(=\frac{\left(x^4-1\right)}{\left(x+1\right)\left(x^4-1\right)}+\frac{-2\left(x-x^3\right)}{\left(x^4-1\right)}\)\(=\frac{1}{x+1}+\frac{-2\left(x-x^3\right)}{\left(x^4-1\right)}\)??? Chắc hết rút được rồi :v

30 tháng 11 2018

Câu b) hơi dài quá rồi.Làm lại

b) \(M=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1}{x^2+2x+1}-\frac{1}{x^2-1}\right)\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{1}{\left(x+1\right)^2}-\frac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{x-1}{\left(x+1\right)^2\left(x-1\right)}-\frac{x+1}{\left(x+1\right)^2\left(x-1\right)}\right)\)

\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}\left(\frac{\left(x-1\right)-\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\right)\)\(=\frac{1}{x+1}+\frac{x-x^3}{x^2+1}.\frac{-2}{\left(x+1\right)^2\left(x-1\right)}\)

\(=\frac{1}{x+1}+\frac{-2\left(x-x^3\right)}{\left(x^2+1\right)\left(x+1\right)^2\left(x-1\right)}\)\(=\frac{1}{x+1}+\frac{2x\left(x+1\right)\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)^2\left(x-1\right)}\)

\(=\frac{1}{x+1}+\frac{2x}{\left(x^2+1\right)\left(x+1\right)}=\frac{x+1}{x^2+1}\) (Quy đồng và rút gọn)

9 tháng 6 2017

a,x khác +_1

b, rút gọn là xong

28 tháng 12 2020
Bạn tham khảo!

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả