K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)

Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)

Ta có :

gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3

Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 3 là sẽ tìm được nghiệm nguyên của 

24 tháng 3 2021
Chịu nha bạn
15 tháng 6 2017

Áp dụng Bất đẳng thức Cauchy :

\(\dfrac{1}{x^2+y^2}+\dfrac{x^2+y^2}{4}\ge1\)

\(\dfrac{1}{xy}+xy\ge2\)

Cộng vế theo vế, ta được:

\(\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}+\dfrac{x^2+y^2}{4}+xy\ge3\)

\(\Leftrightarrow P+\dfrac{x^2+y^2+4xy}{4}\ge3\)

\(\Leftrightarrow P+\dfrac{\left(x+y\right)^2+2xy}{4}\ge3\)

\(\Leftrightarrow P+\dfrac{4+2xy}{4}\ge3\Leftrightarrow P\ge3-\dfrac{4-2xy}{4}\) (vì: \(x+y=2\Rightarrow\left(x+y\right)^2=4\) )

Mà: \(x^2+y^2\ge2xy\Rightarrow x^2+y^2+2xy\ge4xy\Rightarrow4\ge4xy\Rightarrow2\ge2xy\)

\(\Rightarrow P=3-\dfrac{4+2xy}{4}\ge3-\dfrac{4-2}{4}=\dfrac{3}{2}\)

Vậy \(MinP=\dfrac{3}{2}\) khi \(x+y=1\)

15 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(x+y=2\ge2\sqrt{xy}\Rightarrow4\ge4xy\Rightarrow xy\le1\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\)

\(\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}+\dfrac{1}{2xy}=\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2xy}\)

\(\ge\dfrac{4}{4}+\dfrac{1}{2}=1+\dfrac{1}{2}=\dfrac{3}{2}\left(x+y=2;xy\le1\right)\)

Đẳng thức xảy ra khi \(x=y=1\)

6 tháng 5 2018

    \(x+y+z=0\)

\(\Leftrightarrow\)\(\left(x+y+z\right)^2=0\)

\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow\)\(x^2+y^2+z^2=0\)   (vì  xy + yz + xz = 0)

\(\Rightarrow\)\(x=y=z=0\)

Vậy   \(Q=\left(x-1\right)^{2018}+\left(y-1\right)^{2019}+\left(z-1\right)^{2020}=1\)

9 tháng 7 2021

\(P=\dfrac{1}{x^3+y^3}+\dfrac{1}{xy}=\dfrac{1}{x^3+3x^2y+3xy^2+y^3-3xy\left(x+y\right)}+\dfrac{3}{3xy}\)

\(=\dfrac{1}{\left(x+y\right)^3-3xy}+\dfrac{3}{3xy}\)\(=\dfrac{1}{1-3xy}+\dfrac{3}{3xy}\)

áp dụng BDT Cauchy Scharwarz

\(=>P\ge\)\(\dfrac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=4+2\sqrt{3}\)

 

9 tháng 7 2021

Bn ơi dấu "=" xảy ra khi nào vậy ạ

9 tháng 3 2019

câu a là x-y =-2 nha mk viết nhầm

11 tháng 7 2021

Ta có :

\(P=\sum\dfrac{x^3}{\sqrt{y^2+3}}\ge\sum\dfrac{x^3}{\sqrt{y^2+xy+yz+zx}}\ge\sum\dfrac{x^3}{\sqrt{\left(x+y\right)\left(z+y\right)}}\\ \overset{Cosi}{\ge}\sum\dfrac{2x^3}{x+2y+z}\ge2\sum\dfrac{\left(x^2\right)^2}{x^2+2xy+xz}\\ \overset{Svacxo}{\ge}2\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

\(\overset{Cosi}{\ge}\dfrac{2\left(x^2+y^2+z^2\right)^2}{4\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{2}\\ \overset{Cosi}{\ge}\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\)

Dấu = xảy ra khi x=y=z=1