K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

\(C=\frac{x^2+4x+7}{4+x}=\frac{x\left(x+4\right)+7}{x+4}=x+\frac{7}{x+4}\)

Để \(C\in Z\Leftrightarrow x+4\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta có bảng:

x+41-17-7
x-3-53-11

Vậy...

3 tháng 7 2018

x^2+4x+7 =(x+4).√(x^2+7) 
<=> (x^2 + 4x + 7)/(x + 4) = √(x^2 + 7) (1) 
Điều kiện: x + 4 # 0<=> x # - 4 

(1)<=> (x^2 + 4x + 7)^2/(x + 4)^2 = x^2 + 7 
<=> (x^4 + 16x^2 + 49 + 8x^3 + 56x + 14x^2)/(x^2 + 8x + 16) = x^2 + 7 
=> x^4 + 16x^2 + 49 + 8x^3 + 56x + 14x^2 = (x^2 + 7)(x^2 + 8x + 16) 
<=>x^4 + 16x^2 + 49 + 8x^3 + 56x + 14x^2 = x^4 + 8x^3 + 16x^2 + 7x^2 + 56x + 112 
<=> 7x^2 = 63 
<=> x^2 = 9 
<=> x = 3 (thoả mãn) 
hoặc x = -3 (thỏa mãn) 

Vậy Pt có nghiệm x = 3 hoặc x = -3

k cho mình nha

25 tháng 8 2017

Vì số cần tìm là số có 3 chữ số và chữ số hàng trăm là 8, nên ta giả sử số đó là .8ab

Số đó chia cho 2 dư 1 nên b phải là chữ số lẻ.

Số đó chia cho 5 dư 3 nên b phải bằng 3 hoặc 8. Mà b là chữ số lẻ nên b = 3

Số đó chia hết cho 3 nên: 8 + a + 3 = 11 + a  chia hết cho 3.

11 tháng 7 2021

undefined

Để biểu thức nguyên thì \(3⋮\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}+2=3\)

\(\Leftrightarrow\sqrt{x}=1\)

hay x=1

12 tháng 7 2021

\(\dfrac{3}{\sqrt{x}+2}\in Z< =>\sqrt{x}+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

mà \(x>0=>\sqrt{x}+2>2\) nên \(\sqrt{x}+2=\left\{3\right\}=>x=1\left(tm\right)\)

Vaayy.....

Để biểu thức \(\dfrac{3}{\sqrt{x}+2}\) nguyên thì \(3⋮\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}+2=3\)

\(\Leftrightarrow\sqrt{x}=1\)

hay x=1

15 tháng 11 2017

3x+7=28

3x    =28-7

3x     =21

  x    =21:3

 x      =7

25 tháng 7 2016

\(1.\frac{x-7}{2}< 0\)

\(\Leftrightarrow\frac{x-7}{2}.2< 0.2\)

\(\Leftrightarrow x-7< 0\Leftrightarrow x< 7\)

\(S=\left\{xlx< 7\right\}\)

2)\(\)Đề biểu thức sau nhân giá trị âm thì :

\(\frac{x+3}{x-5}< 0\Leftrightarrow x+3< 0\Leftrightarrow x< 3\left(Đk:x\ne5\right)\)

\(S=\left\{xlx< 3\right\}\)

3.Giá trị của x thuộc Z để biểu thức sau nhận giá trị dương:

\(x^2+x\ge0\)

\(\Leftrightarrow x\left(x+1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\ge-1\end{cases}}}\)

\(S=\left\{xlx\ge-1\right\}\)