K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : x(x + 1) = 0 

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

Ta có : \(x^2+4x=0\)

\(\Leftrightarrow x\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)

3 tháng 7 2018

a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

b) \(x\left(x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

b) Ta có: \(9x^4+8x^2-1=0\)

\(\Leftrightarrow9x^4+9x^2-x^2-1=0\)

\(\Leftrightarrow9x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(9x^2-1\right)=0\)

mà \(x^2+1>0\forall x\)

nên \(9x^2-1=0\)

\(\Leftrightarrow9x^2=1\)

\(\Leftrightarrow x^2=\dfrac{1}{9}\)

hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)

Vậy: \(S=\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)

5 tháng 7 2018

1. a) 5–4x+1=20160

5–4x+1=1

5–4x+1=1

4x+1=5–1

4x+1=4

4x.4=4

4x=4:4

4x=1

Vì 40=1

Nên x=0

b) 2x+1.22016=22017

2x+1=22017:22016

2x+1=22017–2016

2x+1=2

2x.2=2

2x=2:2

2x=1

Vì 20=1

Nên x=0

2.

a) | x2–19 | =6

==> x2–19=6 hoặc x2–19=-6

==> x2=6+19 hoặc x2=—6+19

==> x2=25 hoặc x2=13

Ta có x2=13

==> không tìm được giá trị x

Ta có :52=25 

Nên x=5

c) (x+1).(x2–4)=0

==> x+1 =0 hoặc x2–4=0

==> x=0–1 hoặc x2=0+4

==> x=-1 hoặc x2=4

Mà x2=22

==> x=2

Vậy x=—1 hoặc x=2

d) x15=x

Mình chỉ biết là x=0 hoặc x=1 thôi,cách giải mình quên rồi, xl nha

e) 5 chia hết cho x+1

==> x+1 € Ư(5)

==>x+1€{1;—1;5;—5}

Ta có

TH1: x+1=1

x=1–1

x=0

TH2: x+1=—1

x=—1–1

x=—2

TH3: x+1=5

x= 5–1

x=4

TH4: x+1=—5

x=—5 —1 

x=—6 

Vậy x€{0; —2;4;—6}

Nếu bạn chưa học số âm thì không cần viết vào đâu nha, bỏ luôn trường hợp 2 và 4 đi 

18 tháng 7 2021

Em bấm vào biểu tượng \(\sum\) trên thanh công cụ và gõ phân số để mn dễ hỗ trợ nhé!

18 tháng 7 2021

`(x^2+x-6)/(x^2+4x+3):(x^2-10x+25)/(x^2-4x-5)(x ne -1,x ne 5,x ne -3)`

`=((x-2)(x+3))/((x+1)(x+3)):(x-5)^2/((x+1)(x-5))`

`=(x-2)/(x+1):(x-5)/(x+1)`

`=(x-2)/(x-5)`

14 tháng 8 2019

a, th1 : 2- x +2=x

<=> X=2

Th2: -2 +x +2= x

<=> X có vô sốnghiệm

14 tháng 8 2019

B1: a, |2 - x| + 2 = x

=> |2 - x| = x - 2

Dễ thấy (2 - x) và số đối của (x - 2)

=> |2 - x| = x - 2

=> 2 - x ≤ 0

=> x  ≥ 2

b, Điều kiện: x + 7 ≥ 0 => x  ≥ -7

Ta có: |x - 9| = x + 7

\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)

13 tháng 8 2019

Trả lời

Mk nghĩ bạn có thể tham khảo ở CHTT nha !

Có đáp án của câu b;c và d đó.

Đừng ném đá chọi gạch nha !

a) vi(x^2+5)(x^2-25)=0

=>x^2+5=0 hoac x^2-25=0

=>x=...hoac x=...(tu lam)

b)(x-2)(x+1)=0

=>x-2=0 hoac x+1=0

=>x=2 hoac x=-1

c)(x^2+7)(x^2-49)<0

=>x^2+7va x^2-49 trai dau

ma x^2+7>=7=>x^2-49<0=>x<7 va x>-7

con lai tuong tu

tu lam nhe nho k nha

26 tháng 2 2019

a,\(A=\left(\frac{2x-x^2}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\left(\frac{2x+x^2\left(1-x\right)}{x^3}\right)\left(ĐKXĐ:x\ne2;x\ne0\right)\)

\(A=\frac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{-x^3+x^2+2x}{x^3}\)

\(=\frac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}.\frac{x^2-x-2}{-x^2}\)

\(=\frac{-x\left(x^2+4\right)}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{-x^2}=\frac{x+1}{2x}\)

b, \(A=x\Leftrightarrow\frac{x+1}{2x}=x\Rightarrow2x^2=x+1\Leftrightarrow2x^2-x-1=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)(thỏa mãn điều kiện)

c, \(A\in Z\Leftrightarrow\frac{x+1}{2x}\in Z\Leftrightarrow x+1⋮\left(2x\right)\)

\(\Leftrightarrow2x+2⋮2x\Leftrightarrow2⋮2x\Leftrightarrow1⋮x\Leftrightarrow x=\pm1\) (thỏa mãn ĐKXĐ)

3 tháng 8 2019

\(2x^2-4x-5=2x^2-4x+2-7=2\left(x-1\right)^2-7\ge0-7=-7\Leftrightarrow x=1\)

\(-2x^2-6x+15=-2x^2-6x-4,5+19,5=-2\left(x+\frac{3}{2}\right)^2+19,5\le0+19,5=19,5\Leftrightarrow x=\frac{-3}{2}\)

3 tháng 8 2019

Bài 1 : Tìm giá trị lớn nhất, nhỏ nhất

a, \(2x^2-4x-5=2\left(x^2-2x+1\right)-7=2\left(x-1\right)^2-7\)

Vì \(2\left(x-1\right)^2\ge0\Rightarrow2x^2-4x-5\ge-7\)

\(''=''\Leftrightarrow x=1\)

b, \(-2x^2-6x+15=-2\left(x^2+2x.\frac{3}{2}+\frac{9}{4}\right)+\frac{39}{2}=-2\left(x+\frac{3}{2}\right)^2+\frac{39}{2}\)

Vì \(-2\left(x+\frac{3}{2}\right)^2\le0\Rightarrow-2x^2-6x+15\le\frac{39}{2}\)

\(''=''\Leftrightarrow x=-\frac{3}{2}\)

Bài 2 : Tìm x

a, \(2x^3-3x^2+2=0\) (tạm thời chưa ra)

b, \(x^4-2x^2+1=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=0\Rightarrow x^2-1=0\Rightarrow x=\pm1\)