a) \(x.\left(x+1\right)=0\)
b) \(x^2+4x=0\)
giúp mik vs ạ, mik đag cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(9x^4+8x^2-1=0\)
\(\Leftrightarrow9x^4+9x^2-x^2-1=0\)
\(\Leftrightarrow9x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(9x^2-1\right)=0\)
mà \(x^2+1>0\forall x\)
nên \(9x^2-1=0\)
\(\Leftrightarrow9x^2=1\)
\(\Leftrightarrow x^2=\dfrac{1}{9}\)
hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)
Vậy: \(S=\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)
1. a) 5–4x+1=20160
5–4x+1=1
5–4x+1=1
4x+1=5–1
4x+1=4
4x.4=4
4x=4:4
4x=1
Vì 40=1
Nên x=0
b) 2x+1.22016=22017
2x+1=22017:22016
2x+1=22017–2016
2x+1=2
2x.2=2
2x=2:2
2x=1
Vì 20=1
Nên x=0
2.
a) | x2–19 | =6
==> x2–19=6 hoặc x2–19=-6
==> x2=6+19 hoặc x2=—6+19
==> x2=25 hoặc x2=13
Ta có x2=13
==> không tìm được giá trị x
Ta có :52=25
Nên x=5
c) (x+1).(x2–4)=0
==> x+1 =0 hoặc x2–4=0
==> x=0–1 hoặc x2=0+4
==> x=-1 hoặc x2=4
Mà x2=22
==> x=2
Vậy x=—1 hoặc x=2
d) x15=x
Mình chỉ biết là x=0 hoặc x=1 thôi,cách giải mình quên rồi, xl nha
e) 5 chia hết cho x+1
==> x+1 € Ư(5)
==>x+1€{1;—1;5;—5}
Ta có
TH1: x+1=1
x=1–1
x=0
TH2: x+1=—1
x=—1–1
x=—2
TH3: x+1=5
x= 5–1
x=4
TH4: x+1=—5
x=—5 —1
x=—6
Vậy x€{0; —2;4;—6}
Nếu bạn chưa học số âm thì không cần viết vào đâu nha, bỏ luôn trường hợp 2 và 4 đi
Em bấm vào biểu tượng \(\sum\) trên thanh công cụ và gõ phân số để mn dễ hỗ trợ nhé!
`(x^2+x-6)/(x^2+4x+3):(x^2-10x+25)/(x^2-4x-5)(x ne -1,x ne 5,x ne -3)`
`=((x-2)(x+3))/((x+1)(x+3)):(x-5)^2/((x+1)(x-5))`
`=(x-2)/(x+1):(x-5)/(x+1)`
`=(x-2)/(x-5)`
B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)
Trả lời
Mk nghĩ bạn có thể tham khảo ở CHTT nha !
Có đáp án của câu b;c và d đó.
Đừng ném đá chọi gạch nha !
a) vi(x^2+5)(x^2-25)=0
=>x^2+5=0 hoac x^2-25=0
=>x=...hoac x=...(tu lam)
b)(x-2)(x+1)=0
=>x-2=0 hoac x+1=0
=>x=2 hoac x=-1
c)(x^2+7)(x^2-49)<0
=>x^2+7va x^2-49 trai dau
ma x^2+7>=7=>x^2-49<0=>x<7 va x>-7
con lai tuong tu
tu lam nhe nho k nha
a,\(A=\left(\frac{2x-x^2}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\left(\frac{2x+x^2\left(1-x\right)}{x^3}\right)\left(ĐKXĐ:x\ne2;x\ne0\right)\)
\(A=\frac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{-x^3+x^2+2x}{x^3}\)
\(=\frac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}.\frac{x^2-x-2}{-x^2}\)
\(=\frac{-x\left(x^2+4\right)}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{-x^2}=\frac{x+1}{2x}\)
b, \(A=x\Leftrightarrow\frac{x+1}{2x}=x\Rightarrow2x^2=x+1\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)(thỏa mãn điều kiện)
c, \(A\in Z\Leftrightarrow\frac{x+1}{2x}\in Z\Leftrightarrow x+1⋮\left(2x\right)\)
\(\Leftrightarrow2x+2⋮2x\Leftrightarrow2⋮2x\Leftrightarrow1⋮x\Leftrightarrow x=\pm1\) (thỏa mãn ĐKXĐ)
\(2x^2-4x-5=2x^2-4x+2-7=2\left(x-1\right)^2-7\ge0-7=-7\Leftrightarrow x=1\)
\(-2x^2-6x+15=-2x^2-6x-4,5+19,5=-2\left(x+\frac{3}{2}\right)^2+19,5\le0+19,5=19,5\Leftrightarrow x=\frac{-3}{2}\)
Bài 1 : Tìm giá trị lớn nhất, nhỏ nhất
a, \(2x^2-4x-5=2\left(x^2-2x+1\right)-7=2\left(x-1\right)^2-7\)
Vì \(2\left(x-1\right)^2\ge0\Rightarrow2x^2-4x-5\ge-7\)
\(''=''\Leftrightarrow x=1\)
b, \(-2x^2-6x+15=-2\left(x^2+2x.\frac{3}{2}+\frac{9}{4}\right)+\frac{39}{2}=-2\left(x+\frac{3}{2}\right)^2+\frac{39}{2}\)
Vì \(-2\left(x+\frac{3}{2}\right)^2\le0\Rightarrow-2x^2-6x+15\le\frac{39}{2}\)
\(''=''\Leftrightarrow x=-\frac{3}{2}\)
Bài 2 : Tìm x
a, \(2x^3-3x^2+2=0\) (tạm thời chưa ra)
b, \(x^4-2x^2+1=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=0\Rightarrow x^2-1=0\Rightarrow x=\pm1\)
Ta có : x(x + 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
Ta có : \(x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)
a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
b) \(x\left(x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)