cho hình chữu nhật ABCD có DC = 6cm, BC= 4cm. điểm m nằm trên ab, mc cắt bd tại o, nối m với d
với am = 2cm , hãy so sánh độ dài hai đoạn mo và oc. hãy tính diên tích tứ giác amod
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,MDO>BOC
B,hổng biết tại vì nó có thể nằm ở bất kì đâu?
C,MO<OC.Diện tích AMOD=8cm2
Tớ cũng không chắc nữa vì bài quá khó!
Ai trả lời được đúng và đầy đủ tớ sẽ tick cho người đấy
giải
có hình
a,\(SMDC=SBCD\) ( VÌ có chung cạnh đáy DC và chung chiều cao là chiều rộng của hình chữ nhật )
\(SMOD=SBOC\) ( VÌ SMDC=SBDC và có chung phần DOC )
b, nếu \(SMBCD=20CM^2\) THÌ tổng đọ dài cạnh MB và DC của hình thang là :
20*2 : 4 = 10 ( cm2 )
Tổng độ dài cạnh AB VÀ DC LÀ :
6*2= 12 ( cm )
độ dài cạnh AM là :
12 - 10 = 2 ( cm )
c, độ dài cạch MB là : 6-2 =4 ( cm )
tỉ lệ độ dài cạnh MB và DC là : \(4:6=\frac{2}{3}\)
\(\Rightarrow\) \(SMBD=\frac{2}{3}SBCD\) ( VÌ MB = \(\frac{2}{3}\) CD và có cùng chiều cao là chiều rộng của hình chữ nhât ABCD )
\(\Rightarrow MH=\frac{2}{3}CK\) ( VÌ SMBD = \(\frac{2}{3}\) SBCD VÀ có chung cạnh đáy BD)
\(\Rightarrow SMOD=\frac{2}{3}SDOC=\frac{2}{5}MDC\) ( vì MH = \(\frac{2}{3}\) CK và có chung cạnh đáy DO )
\(\Rightarrow MO=\frac{2}{3}OC\) ( VÌ SMOD = \(\frac{2}{3}\) SOCD và có chung chiều cao hạ từ đỉnh D vuông góc với cạnh MC )
SAMD LÀ : 4*2 : 2 = 4 ( CM2 )
SMDC LÀ : 6*4 : 2 = 12 ( CM2 )
SMOD LÀ : 12 : 5 = 2,4 ( CM2 )
\(\Rightarrow\) \(SAMOD=4+2,4=6,4\left(CM2\right)\)
ĐÁP SỐ : ....