K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2015

a) => 2a^2 + 2b^2 = 2ab + 2ba

=>  2a^2 + 2b^2 - 2ab - 2ba = 0

=> (a-b)^2 + (a-b)^2 = 0

=> 2(a-b)^2 = 0

=> a-b = 0

=> a = b

b) Nhân hai vế với 2 và làm tương tự câu a)

=> (a-b)^2 + (b-c)^2 + (a-c)^2 = 0

=> a = b = c

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
17 tháng 10 2021

 

chứng minh rằng

nếu a2 + b+ c2 = ab +ac + bc thì a = b= c

    Giải 

Ta có: a^2 + b^2 + c^2 = ab + bc + ca

<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca

<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1)
Vì (a-b)^2 ; (b-c)^2 ; (c -a)^2 ≧ 0 với mọi a,b,c.
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2)
Từ (1) và (2) khẳng định dấu "=" khi:
a - b = 0; b - c = 0 ; c - a = 0 => a=b=c
Vậy a=b=c.

\(a^2+b^2+c^2=ab+ac+bc\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)

14 tháng 5 2021

a )

`VP= (a+b)^3-3ab(a+b)`

     `=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`

     `=a^3+b^3 =VT (đpcm)`

b) 

b) Ta có

`VT=a3+b3+c3−3abc`

     `=(a+b)3−3ab(a+b)+c3−3abc`

     `=[(a+b)3+c3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`

    `=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`

  
14 tháng 5 2021

 

a) Ta có:

`VP= (a+b)^3-3ab(a+b)`

     `=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`

     `=a^3 + b^3=VT(dpcm)`

b) Ta có

`VT=a^3+b^3+c^3−3abc`

     `=(a+b)^3−3ab(a+b)+c^3−3abc`

     `=[(a+b)^3+c^3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`

    `=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`

12 tháng 1 2022

\(\dfrac{a}{b}=\dfrac{b}{c}\Rightarrow ac=b^2\)

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)

Đề thiếu rồi bạn

12 tháng 1 2022

đề sai r bạn

12 tháng 1 2022

chuẩn cm nó luôn

c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)

\(=a^4-2a^3b+2ab^3-b^4\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)

\(=\left(a-b\right)^3\cdot\left(a+b\right)\)

NV
17 tháng 9 2021

Kẻ đường cao BD ứng với AC. Do góc A tù \(\Rightarrow\) D nằm ngoài đoạn thẳng AC hay \(CD=AD+AC\) và \(\widehat{DAB}=180^0-120^0=60^0\)

Áp dụng định lý Pitago:

\(AB^2=BD^2+AD^2\) \(\Rightarrow BD^2=AB^2-AD^2\)

Trong tam giác vuông ABD:

\(cos\widehat{BAD}=\dfrac{AD}{AB}\Rightarrow\dfrac{AD}{AB}=cos60^0=\dfrac{1}{2}\Rightarrow AD=\dfrac{1}{2}AB\)

\(\Rightarrow BD^2=AB^2-\left(\dfrac{1}{2}AB^2\right)=\dfrac{3}{4}AB^2\)

Pitago tam giác BCD:

\(BC^2=BD^2+CD^2=\dfrac{3}{4}AB^2+\left(AD+AC\right)^2\)

\(=\dfrac{3}{4}AB^2+\left(\dfrac{1}{2}AB+AC\right)^2\)

\(=\dfrac{3}{4}AB^2+\dfrac{1}{4}AB^2+AB.AC+AC^2\)

\(=AB^2+AB.AC+AC^2\)

Hay \(a^2=b^2+c^2+bc\)

NV
17 tháng 9 2021

undefined

9 tháng 12 2021

Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)

CMTT: \(ab+bc>b^2;ab+ac>a^2\)

Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)