cho một hình chữ nhật ABCD biết AB bằng 10cm và BC bằng 8cm. Trên đoạn BC lấy 1 điểm M sao cho CM bằng 3cm.
a) tính diện tích tam giác AMD?
b) kéo dài DC và AM nó cắt nhau tại điểm E
- tính diện tích tam giác ACM
- tính diện tích tam giác BME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chiều dài hình chữ nhật ABCD là:
60 : 2 : (3 + 2) x 3 = 18 (cm)
Chiều rộng hình chữ nhật ABCD là
60 : 2 : (3 + 2) x 2 = 12 (cm)
Diện tích hình chữ nhật ABCD là:
18 x 12 = 216 (cm\(^2\))
b) Diện tích tam giác ABE là:
18 x 12 : 2 = 108 (cm\(^2\))
Diện tích tam giác ABM là:
18 x (12 : 3 x 2) : 2 = 72 (cm\(^2\))
Vậy diện tích tam giác MBE là:
108 - 72 = 36 (cm\(^2\))
Diện tích tam giác MCD là:
18 x (12 - 8) : 2 = 36 (cm\(^2\))
Vậy diện tích tam giác MBE bằng diện tích tam giác MC
Còn hình vẽ thì mình không biết vẽ cách nào nữa
a ) Chiều dài hình chữ nhật ABCD là :
60 : 2 : ( 3 + 2 ) x 3 = 18 ( cm )
Chiều rộng hình chữ nhật ABCD là :
60 : 2 : ( 3 + 2 ) x 2 = 12 ( cm )
Diện tích hình chữ nhật ABCD là :
18 x 12 = 216 ( cm2 )
b ) Diện tích tam giác ABE là :
18 x 12 : 2 = 108 ( cm2 )
Diện tích tam giác ABM là :
18 x ( 12 : 3 x 2 ) : 2 = 72 ( cm2 )
Vậy diện tích tam giác MBE là :
108 - 72 = 36 ( cm2 )
Diện tích tam giác MCD là :
18 x ( 12 - 8 ) : 2 = 36 ( cm2 )
Vậy diện tích tam giác MBE bằng diện tích tam giác MCD .
c ) EC là đường cao ứng với cạnh đáy BM của tam giác BME .
Vậy EC bằng :
36 x 2 : 8 = 9 ( cm )
Diện tích tam giác ADE bằng :
12 x ( 18 + 9 ) : 2 = 162 ( cm2 )
Xét hai tam giác ABE và ADE có cùng cạnh đáy là AE .
Vậy tỉ số diện tích của hai tam giác ABE và ADE cũng chính là tỉ số hai đường cao vẽ từ đỉnh B và D là 108/162 = 2/3 .
Xét hai tam giác ABO và ADO có cùng đáy AO và tỉ số hai đường cao tương ứng là 2/3 .
Nên diện tích tam giác ABO / diện tích tam giác ADO = 2/3 .
Ta lại xét hai tam giác ABO và ADO có hai đáy BO và DO và cùng có một đường cao đường cao tương ứng vẽ từ A .
Vậy diện tích tam giác ABO / diện tích tam giác ADO = OB / OD ( vì có cùng đường cao vẽ từ A ) .
Vậy OB / OD = 2/3 .