Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc với BD tại H. Hãy tính chu vi và diện tích của hình chữ nhật nếu biết AB = 24cm và AH = 12cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha bạn
Xét tam giác ABD vuông tại A (ABCD là hình chứ nhật nên góc A = 90 độ)
Áp dụng hệ thức lượng trong tam giác vuông
\(\dfrac{1}{AD^2}+\dfrac{1}{AB^2}=\dfrac{1}{AH^2}\)
Thay số vào tính được AD = 15cm
Chu vi HCN = (20+15).2 = 70cm
Xét tam giác AHB vuông tại H có
\(AH^2+HB^2=AB^2\)( đl PYtago)
T/s \(12^2+HB^2=20^2\)
=>\(HB^2=20^2-12^2\)
=> \(HB^2=256\)
=> \(HB=16\)
Xét tam giác DAB vuông tại A có
\(AH^2=DH.HB\)
⇔ \(12^2=DH.16\)
=> \(DH=24\)
Xét tam giác AHD vuong tại H có
\(AH^2+DH^2=AD^2\)( đl Pyta go)
T/s \(12^2+24^2=AD^2\)
=> AD = \(12\sqrt{5}\)
Chu vi HCN ABCD là
( AB + AD ).2
= ( 20 +12\(\sqrt{5}\)).2
= 93,6 cm
Vây chu vi là 93,6 cm
BH=căn 10^2-6^2=8cm
=>BD=10^2/8=12,5cm
=>AD=7,5cm
S ABCD=7,5*10=75cm2
a: Xét ΔABH vuông tại H có sin ABH=AH/AB=1/2
nên góc ABH=30 độ
Xét ΔABD vuông tại A có \(AD=AB\cdot\tan30^0=8\sqrt{3}\left(cm\right)\)
\(C=\left(24+8\sqrt{3}\right)\cdot2=48+16\sqrt{3}\left(cm\right)\)
\(S=AB\cdot AD=8\sqrt{3}\cdot24=192\sqrt{3}\left(cm^2\right)\)
b: \(BD=\dfrac{15^2}{9}=25\left(cm\right)\)
\(AD=\sqrt{25^2-15^2}=20\left(cm\right)\)
\(C=\left(AB+AD\right)\cdot2=\left(15+20\right)\cdot2=70\left(cm\right)\)
\(S=15\cdot20=300\left(cm^2\right)\)
c: AD/AB=3/4
nên HD/HB=9/16
Đặt HD/9=HB/16=k
=>HD=9k; HB=16k
Ta có: \(AH^2=HD\cdot HB\)
\(\Leftrightarrow144k^2=144\)
=>k=1
=>HD=9cm; HB=16cm
\(BD=9+16=25\left(cm\right)\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AB=\sqrt{16\cdot25}=20\left(cm\right)\)
\(C=\left(15+20\right)\cdot2=70\left(cm\right)\)
\(S=15\cdot20=300\left(cm^2\right)\)
Áp dụng định lý Pytago ta có:
\(AH^2+HB^2=AB^2\)
\(\Rightarrow\)\(HB^2=AB^2-AH^2\)
\(\Rightarrow\)\(HB^2=20^2-12^2=256\)
\(\Rightarrow\)\(HB=16\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BD\)
\(\Rightarrow\)\(BD=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BD=\frac{20^2}{16}=25\)
Áp dụng định lý Pytago ta có:
\(AB^2+AD^2=BD^2\)
\(\Rightarrow\)\(AD^2=BD^2-AB^2\)
\(\Rightarrow\)\(AD^2=25^2-20^2=225\)
\(\Rightarrow\)\(AD=15\)
Vậy cạnh còn lại = 15; đường chéo = 25