K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

Chọn B.

Với ,

 xét từng TH phá dấu trị tuyệt đối, ta tìm được nghiệm

-3 ≤ y ≤ 0

Khi đó   và 

Do đó

Vậy có tất cả hai cặp số thực (x; y)  thỏa mãn yêu cầu bài toán.

4 tháng 7 2018

Đáp án B.

Với 4 y - y - 1 + y + 3 2 ≤ 8 ,  xét từng TH phá giá trị tuyệt đối, ta tìm được nghiệm - 3 ≤ y ≤ 0 .  

Khi đó  3 x 2 - 2 x - 3 - log 3 5 = 3 x 2 - 2 x - 3 3 log 3 5 = 3 x 2 - 2 x - 3 5 ≥ 1 5  và y ∈ - 3 ; 0 ⇔ y + 4 ∈ 1 ; 4 ⇒ 5 - y + 4 ≤ 5 - 1 = 1 5 .  

Do đó  3 x 2 - 2 x - 3 - log 3 5 = 5 - y + 4 ⇔ [ x = - 1 x = 3 y = - 3 ⇒ x ; y = - 1 ; - 3 ; 3 ; - 3 .  

Vậy có tất cả hai cặp số thực (x;y) thỏa mãn yêu cầu bài toán.

7 tháng 4 2018

10 tháng 2 2019

Đáp án là B

25 tháng 2 2019

Đáp án B.

Với  4 y - y - 1 + y + 3 2 ≤ 8

xét từng TH phá giá trị tuyệt đối, ta tìm được nghiệm  - 3 ≤ y ≤ 0

Khi đó  3 x 2 - 2 x - 3 - log 3   5 = 3 x 2 - 2 x - 3 3 log 3   5 = 3 x 2 - 2 x - 3 5 ≥ 1 5

và  y ∈ - 3 ; 0 ⇔ y + 4 ∈ 1 ; 4 ⇒ 5 - y + 4 ≤ 5 - 1 = 1 5

Do đó

Vậy có tất cả hai cặp số thực (x; y) thỏa mãn yêu cầu bài toán.

Ta có: \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)

nên \(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)

mà 2x+y-z=0

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}=\dfrac{2x+y-z-2+1+3}{4+3-5}=\dfrac{2}{2}=1\)

Do đó: x=3; y=2; z=8