Cho tam giác ABC cắt trung tuyến BD và CE. Gọi I và K lần lượt là trung điểm của BE, CD và M, N theo thứ tự là giao điểm của IK với BD và CE. Chứng minh rằng IM=MN=NK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối ED, Gọi O là giao điểm của EC và BD, nổi AO cắt BC tại P. Vì IK là đường trung bình hình thang EDCB nênKN, MN, IM // ED //BC, do đó N, M lần lượt là trung điểm của EC, BD
=> IM, KN lần lượt là đường trung bình tam giác BED và CED nên IM=NK
ED=1/2 BC, IK = (ED+BC)/2, IK = IM+MN+NK. Thay các tham số này vào ta có MN=ED/2
DO đó Im=NM=MN
Con tham khảo tại link dưới đây nhé:
Câu hỏi của Dương Ánh Ngọc - Toán lớp 8 - Học toán với OnlineMath
:a,nối E với D,ED là đường trung bình nên ED=4cm
MN là đường trung bình hình thang BEDC nên MN=(8+4):2=6
b,vì MI // ED và M là trung điểm BE => MI là đường trung bình ∆BED
MI=1/2 ED,tương tự ta có KN=MI=1/2 ED (*)
vì ED=1/2 BC mà ∆EDG∞∆IKG∞CBG(G là giao 2 tiếp tuyến)
nên IK=1/2 ED <=> kết hợp với(*)ta có KN=MI=IK=1/2ED
Bài2:gọi đoạn nối trung điểm 2 cạnh AB và AC của tứ giác ABCD là MN,ta có MN=1/2 BC,trong ∆BCD có BC<BD+CD nên MN< BD+CD(bất đẳng thức tam giác)
Bai3:gọi tứ giác đó là ABCD,MN là cạnh nối trung điểm,kéo dài AN giao DC tại E,ta có AB=CE ,nên ta có ∆ABN=∆CEN =>gocBAN=góc CEN.Mà 2 góc nằm ở vị trí so le trong nên AB // DC => ABCD là hình thang.
Bai4:a,kẻ BK // AD,ta có hình bình hành ABKD =>IE là hiệu 2 đáy,kẻ đường cao BH',ta có ∆BCH'=∆ADH,mà ∆BIE cân nên H' là trung điểm IE =>HD=1/2(DE-AB)
b,kẻ BG // với AC,ta có hình bình hành ABGC =>AB=CG
vì ABH'H là hình vuông=>AB=HH'=>HH'=CG mà H'C=DH nên ta có
HH'+H'C=CG+DH mà (HH'+H'C)+(CG+DH)=DG=DC+AB
=>HH'+H'C=HC=1/2(DC+AB)
Bài5:Từ M kẻ MM' vuông góc với d,ta có MM'//BB'//CC'
mà M là trung điểm BC nên MM' là đường trung bình hình thang BB'C'C,ta lại có O là trung điểm AM=>∆AA'O=∆MM'O nên AA'=MM'
ta có MM'=AA'=(BB'+CC'):2
Bài6:Kẻ MN//AB//DC =>MN=(7+3)/2=5 =>∆ANM và∆DNM cân tại N
góc AMN=(180độ-gócANM)/2
góc DMN=(180độ-gócDNM)/2
góc AMN+góc DMN=(180độ-gócANM+180độ-gócDNM)/2
=(360độ-180độ)/2=90độ=gócAMD=>AM vuông góc với DM
còn 3 bài cuối bác nào khỏe tay thì giúp cháu nó hộ em với,em mỏi tayquá rồi
Chi tiết thêm:
lâu lắm mới vào lại câu này
Bài7:từ C kẻ đường vuông góc với BE tại M
kéo dài CM giao AB tại N
Ta có ∆CME đồng dạng với ∆CAN (gg)
=>góc CEM= góc CNA
vì góc CEM= góc AEB (đối đỉnh)
=> góc CNA= góc AEB
=>∆CAN=∆BAE(góc nhọn,cạnh góc vuông,góc 90º)
=>AE=AN=AD
vì AN=AD
mà AK // CN
=> AK là đường trung bình hình thang CIDN
=>IK=KC
*) Trong \(\Delta ABC\), có: \(AE=EB;AD=DC\) => \(ED\) là đường trung bình của \(\Delta ABC\).
=> \(ED\)//\(BC\) và \(ED=\frac{BC}{2}\Rightarrow2ED=BC\).
=> Tứ giác \(EDCB\) là hình thang (do \(ED\)//\(BC\))
*) Trong hình thang EDCB, có: \(EI=IB;DK=KC\Rightarrow IK\) là đường trung bình của hình thang \(EDCB\).
\(\Rightarrow IK=\frac{ED+BC}{2}=\frac{ED+2ED}{2}=\frac{3}{2}ED\)
*) Trong tam giác \(BED\) có: \(BI=IE;IM\)//\(ED\Rightarrow BM=MD\).
Và trong tam giác \(BED\), có: \(BI=IE;BM=MD\Rightarrow IM\) là đường trung bình của tam giác \(BED\Rightarrow IM=\frac{1}{2}ED\)
Tương tự thì \(NK=\frac{1}{2}ED\Rightarrow\)\(MN=IK-IM-NK=\frac{3}{2}ED-\frac{1}{2}ED-\frac{1}{2}ED=\frac{1}{2}ED\)
Vậy \(IM=MN=NK\)
sao N đã là trung điểm CE mà MN còn cắt CE tại K nữa?
Gọi M và N theo thứ tự là trung điểm của BE và CD nhé , mình viết nhầm thành CE
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Dương Ánh Ngọc - Toán lớp 8 - Học toán với OnlineMath