Cho hình vuông ABCD, cạnh bằng a.
a) M là 1 điểm thuộc AD sao cho góc ABM = 30°. Tính AM, BM theo a.
b) Qua A kẻ đường thẳng vuông góc với BM tại F, đường thẳng này cắt CD tại N. Tính độ dài các đoạn thẳng AF, MF, BF theo a.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{MBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: \(BM=\sqrt{AB^2+AM^2}=5\left(cm\right)\)
a) kẻ BM' =BM
=> ∆BMM' là tam giác đều => MM" = BM
=> AB là đường cao cũng là đường trung trực
=>AM=\(\frac{1}{2}\)MM' = \(\frac{1}{2}\)BM
Áp dụng định lí py-ta-go vào tam giác ABM Vuông có :
BM2 = AB2 + AM2
<=> (2AM)2 = AB2 + AM2
<=> 4AM2 = AM2 - AB2
<=> 3AM2 = AB2
<=> AM = \(\frac{AB^2}{3}\) <=> AM =\(\sqrt{\frac{AB^2}{3}}\)= \(\sqrt{\frac{a^2}{3}}\)=\(\frac{a}{\sqrt{3}}\)
<=> BM = \(2\sqrt{\frac{a}{3}}\)= \(\frac{2a}{\sqrt{3}}\)
b) ta có
AB2 = FB . BM
=> FB = \(\frac{AB^2}{BM}\) => FB = a2 . \(\frac{2a}{\sqrt{3}}\)= \(\frac{a\sqrt{3}}{2}\)
còn tính những cái còn lại áp dụng hệ thức lượng mà tính
a) Tam giác AMB vuông tại A, có góc ABM=30 độ
nên BM=2BM
(2AM)^2-AM^2=AB^2
=> 3AM^2=a^2,suy ra AM= \(\frac{a\sqrt{3}}{3}\)
b) Góc MAF= góc ABF= 30 độ( cùng phụ với góc FAB).Từ đó ta có:
Tự làm xong k cho em nha!