Chứng minh rằng: 43101 +23101 chia hết cho 66
Giúp mình giải bài này với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A+2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)
\(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=2\cdot3+...+2^{99}\cdot3\)
\(=6\left(1+...+2^{99}\right)⋮6\)
88+220=(23)8+220=224+220=224(216+1)=224x17chia het cho 17
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
B=1+41+42+...+411
B=(1+41+42)+(43+44+45)+(46+47+48)+(49+410+411)
B= 21+43.(1+41+42)+46.(1+41+42)+49.(1+41+42)
B= 21+43.21+46.21+49.21
B= 21.(1+43+46+49)
Vì 1+43+46+49 là số tự nhiên nên 21.(1+43+46+49)
Vậy B chia hết 21
= (1+41 + 42 ) + ....+(49 + 410 + 411)
= 1x(1+4+16) +...+ 49 x (1+4+16)
= 1 x 21 + ...+ 49 x 21
= (1 + ....+49) x21
vì 21 chia hết cho 21 => (1+....+49)x 21 chia hết cho 21
=> B chia hết cho 21
ta có aaa = a x 100 + a x 10 + a
= a x ( 100 + 10 + 1 )
= a x 111
= a x 3 x 37
vì 37 chia hết cho 37 nên a x 3 x 37 chia hết cho 37 hay aaa chia hết cho 37
......................?
mik ko biết
mong bn thông cảm
nha ................
Gọi A = a + 3b và B = 4a + b
=> 3B = 3 ( 4a + b ) = 12a + 3b
=> 3B - A = 12a + 3b - a - 3b
=> 3B - A = 11a
=> 3B - A chia hết cho 11
mà A chia hết cho 11
=> 3B chia hết cho 11
mà 3 ko chia hết cho 11 => B chia hết cho 11
a) Gọi 2 số tự nhiên liên tiếp là a; a + 1
Ta có:
\(a.\left(a+1\right)\)
\(=a.a+a\)
\(2a+a\)
\(\Rightarrow a.\left(a+1\right)⋮2\)
Vậy tích của 2 số tự nhiên liên tiếp chia hết cho 2
b) Gọi 3 số tự nhiên liên tiếp là a; a + 1; a + 2
Ta có
\(a.\left(a+1\right).\left(a+2\right)\)
\(=\left(2a+a\right).\left(a+2\right)\)
\(=3a+\left(a+2\right)\)
\(~HT~\)
\(43^{101}+23^{101}=43\cdot43^{100}+23\cdot23^{100}=\left(66-23\right)\cdot43^{100}+23\cdot23^{100}\)
\(=66\cdot43^{100}-23\cdot43^{100}+23\cdot23^{100}=66\cdot43^{100}-23\left(43^{100}-23^{100}\right)\)
\(=66\cdot43^{100}-23\left(43-23\right)\left(43^{99}+43^{98}\cdot23+43^{97}\cdot23^2+43^{96}\cdot23^3+...+43\cdot23^{98}+23^{99}\right)\)
\(=66\cdot43^{100}-23\cdot20\left(43^{98}\left(43+23\right)+43^{96}\cdot23^2\left(43+23\right)+...+23^{98}\left(43+23\right)\right)\)
\(=66\cdot43^{100}-460\left(4^{98}\cdot66+4^{96}\cdot23^2\cdot66+...+23^{98}\cdot66\right)\)
\(=66\cdot43^{100}-460\cdot66\left(4^{98}+4^{96}\cdot23^2+...+23^{98}\right)\)
\(=66\left(43^{100}-460\left(4^{98}+4^{96}\cdot23^2+...+23^{98}\right)\right)⋮66\Rightarrow43^{100}+23^{100}⋮66\)(đpcm)
cái chỗ \(43^{100}-23^{100}=\left(43-23\right)\left(43^{99}+43^{98}\cdot23+43^{97}\cdot23^2+43^{96}\cdot23^3+...+43\cdot23^{98}+23^{99}\right)\)
là áp dụng hđt \(a^n-b^n=\left(a-b\right)\left(a^{n-1}+a^{n-2}b+a^{n-3}b^2+a^{n-4}b^3+...+b^{n-1}\right)\)