K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2015

Bài 1: n có 4 chữ số dạng 20ab => 20ab + 2 + a +b=2013 => 11a+b=11

a=0 => b=11(loại)

a=1 => b=0 => n=2010

với n<2000 => tổng các chữ số của n lớn nhất là: 1+9+9+9=28 => n  ≥ 2013-28=1985

xét n có dạng 19ab: 19ab+1+9+a+b=2013 => 11a+b=103

do n ≥ 1985 => a ≥ 8

a=8 => b=7,5 (loại)

a=9 => b=2 => n=1992

3 tháng 1 2015

Bài 2: Chắc là hợp số :D

từ \(a^2+b^2+c^2=e^2+f^2+d^2\)

=> \(a^2+b^2+c^2\text{ ≡}d^2+e^2+f^2\)(mod 2)

=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)\)  ≡ \(d^2+e^2+f^2+2\left(de+ef+fd\right)\)(mod 2)

=>\(\left(a+b+c\right)^2\text{ ≡}\left(d+e+f\right)^2\) (mod 2)

=>a+b+c ≡ d+e+f (mod 2)

=> a+b+c+d+e+f chia hết cho 2

18 tháng 2 2020

Ta có: \(a^2+b^2+c^2=d^2+e^2+g^2\Leftrightarrow a^2+b^2+c^2+d^2+e^2+g^2=2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2+g^2⋮2\left(1\right)\)

Lại có \(a^2-a=a\left(a-1\right)⋮2\)

Tương tự \(b^2-b,c^2-c,d^2-d,e^2-e,g^2-g⋮2\)

\(\Leftrightarrow\left(a^2+b^2+c^2+d^2+e^2+g^2\right)-\left(a+b+c+d+e+g\right)⋮2\left(2\right)\)

Từ (1) và (2) \(\Leftrightarrow a+b+c+d+e+g⋮2\)

30 tháng 3 2017

là số nguyên tố

22 tháng 2 2018

la so nguyen to tk cho minh di

17 tháng 3 2016

theo mình là hợp số 

5 tháng 7 2016

Xét hiệu\(\left(a^2+b^2+c^2+d^2+e^2\right)-\left(a+b+c+d+e\right)=\)

7 tháng 10 2021

Mình không biết nha tạm thời bạn hỏi bạn khác đi 😅

27 tháng 11 2018

Vào đây tham khảo nha ! : Câu hỏi của Phạm Chí Cường - Toán lớp 6 | Học trực tuyến

26 tháng 1 2021

\(^∗\)Xét \(n=2011\)thì \(S\left(2011\right)=2011^2-2011.2011+2010=2010\)(vô lí)

\(^∗\)Xét \(n>2011\)thì \(n-2011>0\)do đó \(S\left(n\right)=n\left(n-2011\right)+2010>n\left(n-2011\right)>n\)(vô lí do \(S\left(n\right)\le n\))

* Xét \(1\le n\le2010\)thì \(\left(n-1\right)\left(n-2010\right)\le0\Leftrightarrow n^2-2011n+2010\le0\)hay \(S\left(n\right)\le0\)(vô lí do \(S\left(n\right)>0\))

Vậy không tồn tại số nguyên dương n thỏa mãn đề bài