Chứng tỏ đa thức M(x)=x^4+5.5x^2 +x+6 vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^4-2x^2+6
=x^4 - x^2 - x^2 +1 +5
=x^2(x^2-1)-(x^2-1) +5
=(x^2-1)(x^2-1) +5
=(x^2-1)^2 + 5\(\ge\)5 hay \(\ne\)0
Vậy x^4- 2x^2 +6 vô nghiệm
ta có (x-2)<(x-1)
mà \(\left(x-1\right)^2\) \(\ge\) \(0\)
\(\left|x-2\right|\ge0\)
do x-2<x-1
nên hoặc \(\left(x-1\right)^2>0\) và \(\left|x-2\right|>0\)
hoặc \(\left(x-1\right)^2=0\) và |x-2| >0
hoặc \(\left(x-1\right)^2>0\) và | x-2|=0
nên (x-1)^2 +/x-2/ \(\ne\) 0
vậy đa thức trên vô nghiệm
mk cũng ko bít đúng hay sai lun à. ko đúng đừng có chửi nha, mk làm theo suy nghĩ của mk thui
cho h(x) = 0
\(\Rightarrow\) \(2x^4+x^2+1=0\)
\(2x^4+x^2=-1\)
ta có \(x^2\)\(\ge\)0
mà \(2x^4+x^2\)< 0
\(\Rightarrow\)đa thức h(x) k có nghiệm
Vì \(2x^4\ge0\) với \(\forall\)x
\(x^2\ge0\) với \(\forall\) x
\(\Rightarrow2x^4+x^2+1\ge1>0\)
Vậy đa thức H(x) vô nghiệm
a)
\(\Leftrightarrow3y-6=0\)
\(\Leftrightarrow3y=6\)
\(\Leftrightarrow y=2\)
Vậy P(y) có nghiệm là 2
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Rightarrow x\in\){2;-2}
Vậy M(x) có nghiệm là 2 và -2
b)
Ta có:
\(x^4\ge0\)
\(\Rightarrow x^4+1\ge1>0\)
\(\Rightarrow Q\left(x\right)>0\)
\(\Rightarrow Q\left(x\right)\ne0\)
Vậy Q(x) vô nghiệm
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.