cho tỉ lệ thức a/b = c/d. cmr ta có tỉ lệ thức sau: \(\frac{a^{1005}+b^{1005}}{c^{1005}+d^{1005}}=\frac{\left(a+b\right)^{1005}}{\left(c+d\right)^{1005}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\\ =>\orbr{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(Taco:\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)
\(=>\left(bk+2dk\right).\left(b+d\right)=\left(bk+dk\right).\left(b+2d\right)\)
\(=>\frac{bk+2dk}{bk+dk}=\frac{b+2d}{b+d}\)
\(=>\frac{k.\left(b+2d\right)}{k.\left(b+d\right)}=\frac{b+2d}{b+d}\)
\(=>\frac{b+2d}{b+d}=\frac{b+2d}{b+d}\)(ĐPCM)
, Chờ tí mk làm câu b
Ta có :\(\frac{a}{b}=\frac{c}{d}\)
\(\implies\)\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\left(1\right)\) \(\implies\) \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(2\right)\)
Từ (1);(2)\(\implies\) \(\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)
\(\implies\) \(\left(a+2c\right).\left(b+d\right)=\left(b+2d\right).\left(a+c\right)\)
ta có a^1005+b^1005 / c^1005+d^1005
=> a^1005/c^1005=b^1005/d^1005
=a/c=b/d=a+b/c+d=(a+b)^2015/(c+d)^1005
Đặt \(\left\{{}\begin{matrix}a^{1005}=x\\b^{1005}=y\\c^{1005}=z\end{matrix}\right.\) \(\Rightarrow x^2+y^2+z^2=xz+xz+yz\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2xz+2yz\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-z=0\\y-z=0\end{matrix}\right.\) \(\Leftrightarrow x=y=z\)
\(\Rightarrow a^{1005}=b^{1005}=c^{1005}\Rightarrow a=b=c\)
\(\Rightarrow M=0\)
ta có \(\frac{a}{b}=\frac{c}{d}\)
=>\(\frac{a}{c}=\frac{b}{d}\)(1)
Từ (1) => \(\frac{a^{1005}}{c^{1005}}=\frac{b^{1005}}{d^{1005}}=\frac{a^{1005}+b^{1005}}{c^{1005}+d^{1005}}\)(2)
Từ (1) => \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
=>\(\left(\frac{a}{c}\right)^{1005}=\left(\frac{b}{d}\right)^{1005}=\left(\frac{a+b}{c+d}\right)^{1005}=\frac{\left(a+b\right)^{1005}}{\left(c+d\right)^{1005}}\)(3)
mà \(\left(\frac{a}{c}\right)^{1005}=\frac{a^{1005}}{c^{1005}}\)
từ 2 zà 3 => ghi lại cái cần chứng minh nha ( dpcm)
Ta có : a2010 + b2010 + c2010 = a1005b1005 + b1005c1005 + c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 = 2a1005b1005 + 2b1005c1005 + 2c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 - 2a1005b1005 - 2b1005c1005 - 2c1005a1005 = 0
<=> (a2010 - 2a1005b1005 + b2010) + (b2010 - 2b1005c1005 + c2010) + (c2010 - 2c1005a1005 + a2010) = 0
<=> (a1005 - b1005)2 + (b1005 - c1005)2 + (c1005 - a1005 )2 = 0
=> a1005 - b1005 = b1005 - c1005 = c1005 - a1005 = 0
=> a = b = c
Vậy (a - b)20 + (b - c)11 + (c - a)2010 = (a - a)20 + (a - a)11 + (a - a)2010 = 0 + 0 + 0 = 0 .
a2010 + b2010 + c2010 = a1005b1005 + b1005c1005 + c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 = 2a1005b1005 + 2b1005c1005 + 2c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 - 2a1005b1005 - 2b1005c1005 - 2c1005a1005 = 0
<=> (a2010 - 2a1005b1005 + b2010) + (b2010 - 2b1005c1005 + c2010) + (c2010 - 2c1005a1005 + a2010) = 0
<=> (a1005 - b1005)2 + (b1005 - c1005)2 + (c1005 - a1005 )2 = 0
=> a1005 - b1005 = b1005 - c1005 = c1005 - a1005 = 0
=> a = b = c
https://olm.vn/hoi-dap/question/1038454.html
Mình vừa làm cách đây 11 phút nhé !
Ta có : a2010 + b2010 + c2010 = a1005b1005 + b1005c1005 + c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 = 2a1005b1005 + 2b1005c1005 + 2c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 - 2a1005b1005 - 2b1005c1005 - 2c1005a1005 = 0
<=> (a2010 - 2a1005b1005 + b2010) + (b2010 - 2b1005c1005 + c2010) + (c2010 - 2c1005a1005 + a2010) = 0
<=> (a1005 - b1005)2 + (b1005 - c1005)2 + (c1005 - a1005 )2 = 0
=> a1005 - b1005 = b1005 - c1005 = c1005 - a1005 = 0
=> a = b = c
Vậy (a - b)20 + (b - c)11 + (c - a)2010 = (a - a)20 + (a - a)11 + (a - a)2010 = 0 + 0 + 0 = 0 .