K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2022

Tham khảo:

undefined

29 tháng 3 2020

Từ giải thiết, ta suy ra được những điều sau :

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x}{\left[y-\left(x+y\right)\right]\left(y^2+y+1\right)}-\frac{y}{\left[x-\left(x+y\right)\right]\left(x^2+x+1\right)}\)

\(=\frac{x}{-x\left(y^2+y+1\right)}-\frac{y}{-y\left(x^2+x+1\right)}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)      (1)

Và \(\left(x^2+x+1\right)\left(y^2+y+1\right)\) 

\(=x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1\)

\(=x^2y^2+\left(x^2+xy\left(x+y\right)+xy+y^2\right)+\left(x+y\right)+1\)

\(=x^2y^2+\left(x^2+2xy+y^2\right)+1+1\)

\(=x^2y^2+\left(x+y\right)^2+2\)

\(=x^2y^2+3\)   (2)

Từ (1) và (2) suy ra :

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{-x^2-x-1+y^2+y+1+2x-2y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{-x^2+y^2+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{\left(x+y\right)\left(y-x\right)+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{y-x+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=0\)(ĐPCM)

7 tháng 4 2020

Biến đổi

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x^4-x-y^4+y}{\left(x^3-1\right)\left(y^3-1\right)}=\frac{\left(x^4-y^4\right)-\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

(do x+y=1 => y-1=-x và x-1=-y)

\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^3+y^3\right)-\left(x-y\right)}{xy\left(x^2y^2+y^2x+y^2+yx^2+xy+y+x^2+x+1\right)}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)

\(=\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)

\(=\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+1\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

=> ĐPCM

31 tháng 10 2021

\(xy\ne0,x,y\ne1\)

\(A=\dfrac{x^{ }}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{2\left(x+y\right)}{x^2y^2+3}\)

\(xét:\dfrac{2\left(x+y\right)}{x^2y^2+3}=\dfrac{2}{x^2y^2+3}\left(1\right)\)

\(\dfrac{x^{ }}{y^3-1}-\dfrac{y}{x^3-1}=\dfrac{x^4-x-y^4+y}{\left(x^3-1\right)\left(y^3-1\right)}\left(2\right)\)

\(xét:\) \(x^4-x-y^4+y=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3-1\right)\)

\(=\left(x-y\right)\left[\left(x+y\right)^3-3xy\left(x+y\right)+xy\left(x+y\right)-1\right]\)

\(=\left(x-y\right)\left(1-3xy+xy-1\right)\)

\(=\left(x-y\right)\left(-2xy\right)=-2xy\left(x-y\right)=2xy\)

\(xét\) \(\left(y^3-1\right)\left(x^3-1\right)=x^3y^3-\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+1\)

\(=x^3y^3-\left(1-3xy\right)+1=x^3y^3+3xy=xy\left(x^2y^2+3\right)\)

\(\Rightarrow\left(2\right)\Leftrightarrow\dfrac{-2\left(x-y\right)}{x^2y^2+3}\)

\(\left(1\right)\left(2\right)\Rightarrow A=\dfrac{2}{x^2y^2+3}-\dfrac{2\left(x-y\right)}{x^2y^2+3}=\dfrac{2-2x+2y}{x^2y^2+3}\ne0\left(đề-sai\right)\)

 

 

 

 

19 tháng 11 2021

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

17 tháng 6 2016

Trả lời nhanh nha các bn, mik đang cần gấp, cảm ơn nhiều.

17 tháng 6 2016

Kết hợp với giả thiết nêu ra ở đề bài, ta có vài biến đổi sau: 

\(\frac{x}{y^3-1}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}=\frac{x}{\left[y-\left(x+y\right)\right]\left(y^2+y+1\right)}=-\frac{1}{y^2+y+1}\)  \(\left(1\right)\)

\(\frac{y}{x^3-1}=\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{y}{\left[x-\left(x+y\right)\right]\left(x^2+x+1\right)}=-\frac{1}{x^2+x+1}\)  \(\left(2\right)\)

Mặt khác, ta lại có: \(\left(x^2+x+1\right)\left(y^2+y+1\right)=x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1\)

\(=x^2y^2+\left[x^2+xy\left(x+y\right)+xy+y^2\right]+\left(x+y\right)+1=x^2y^2+\left(x+y\right)^2+2=x^2y^2+3\)

Khi đó,  trừ đẳng thức  \(\left(1\right)\)  cho  đẳng thức  \(\left(2\right)\)  vế theo vế, ta được:

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}=\frac{\left(y-x\right)\left(x+y+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

Vậy,  \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

6 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

NM
6 tháng 1 2021

Xét \(\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{1-y}{y^3-1}+\frac{1-x}{x^3-1}=-\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}\)

\(=-\frac{x^2+y^2+x+y+2}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=-\frac{x^2+y^2+3}{x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1}\)

\(=-\frac{\left(x+y\right)^2-2xy+3}{x^2y^2+x^2+y^2+2xy+2}=-\frac{4-2xy}{x^2y^2+3}=\frac{2\left(xy-2\right)}{x^2y^2+3}\)

từ đó ta có đpcm