Viết các đa thức sau có dạng bình phương của một tổng (hoặc một hiệu)
a, \(\dfrac{1}{9}x^4-2x^2y+9y^2\)
b, \(25x^2-20xy+4y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{1}{9}x^4-2x^2y+9y^2=\left(\dfrac{1}{3}x^2\right)^2-\left(2.\dfrac{1}{3}x^2.3y\right)^2+\left(3y\right)^2\)
\(=\left(\dfrac{1}{3}x^2-3y\right)^2\)
b, \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2=\left(5x-2y\right)^2\)
\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)
\(=\left(x+\frac{1}{4}\right)^2\)
b) \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)
\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)
\(=\left(x+\frac{1}{4}\right)^2\)
b) \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)
\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)
\(=\left(x+\frac{1}{4}\right)^2\)
b) \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)
\(a.x^2+x+\frac{1}{4}=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)
\(=\left(x+\frac{1}{4}\right)^2\)
b) \(x^2+12xy+36xy^2=x^2+2.x.y+y^2\)
\(=\left(x+y\right)^2\) c) \(4x^2-12xy+9y^2=\left(2x\right)^2-2.2x.3y+\left(3y\right)^2\) \(=\left(2x-3y\right)^2\)d) \(x^2-2x+4=x^2-2.x.4+4^2\)
\(=\left(x-4\right)^2\)
e) \(25x^2+4y^2-20xy=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)
^...^ ^_^ Bài làm có gì ko hiểu bạn cứ hỏi nhé ^_^
mạng của mk bị lỗi bạn xem cái phần cuối cùng nhé xl bạn nhiều vì mạng của mk bị lỗi
a. x2 + 6x + 9 = (x + 3)2
b. 25 + 10x + x2 = (5 + x)2
c. x2 + 8x + 16 = (x + 4)2
d. x2 + 14x + 49 = (x + 7)2
e. 4x2 + 12x + 9 = (2x + 3)2
f. 9x2 + 12x + 4 = (3x + 2)2
h. 16x2 + 8 + 1 = (4x + 1)2
i. 4x2 + 12xy + 9y2 = (2x + 3y)2
k. 25x2 + 20xy + 4y2 = (5x + 2y)2
a) \(=\left(x+3\right)^2\)
b) \(=\left(x+5\right)^2\)
c) \(=\left(x+4\right)^2\)
d) \(=\left(x+7\right)^2\)
e) \(=\left(2x+3\right)^2\)
f) \(=\left(3x+2\right)^2\)
h) \(=\left(4x+1\right)^2\)
i) \(=\left(2x+3y\right)^2\)
k) \(=\left(5x+2y\right)^2\)
a) \(25x^2-20xy+4y^2\)
\(=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)
b) \(4x^2+9+12x\)
\(=\left(2x\right)^2+3^2+2.2x.3\)
\(=\left(2x+3\right)^2\)
c) \(\frac{1}{4}+3x+9x^2\)
\(=\left(\frac{1}{2}\right)^2+2.\frac{1}{2}.3x+\left(3x\right)^2\)
\(=\left(\frac{1}{2}+3x\right)^2\)
d) \(-6xy+x^2+9y^2\)
\(=x^2-6xy+9y^2\)
\(=x^2-2.x.3y+\left(3y\right)^2\)
\(=\left(x-3y\right)^2\)
a \(x^2-6x+9=x^2-2.3.x+3^2=\left(x-3\right)^2\)
b \(4y^2+y+\frac{1}{16}=\left(2y\right)^2+2.2y.\frac{1}{4}+\left(\frac{1}{4}\right)^2=\left(2y+\frac{1}{4}\right)^2\)
a, \(25x^2+5xy+\frac{1}{4}y^2=\left(5x\right)^2+2.5x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\)
\(=\left(5x+\frac{1}{2}y\right)^2\)
b, \(9x^2+12x+4=\left(3x\right)^2+2.3x.2+2^2=\left(3x+2\right)^2\)
c, \(x^2-6x+5-y^2-4y=\left(x^2-6x+9\right)-\left(y^2+4y+4\right)\)
\(=\left(x-3\right)^2-\left(y+2\right)^2=\left(x-y-5\right)\left(x+y-1\right)\)
d, \(\left(2x-y\right)^2+4\left(x+y\right)^2-4\left(2x-y\right)\left(x+y\right)\)
\(=\left(2x-y\right)^2-2\left(2x-y\right)\left(2x+2y\right)+\left(2x+2y\right)^2\)
\(=\left(2x-y+2x+2y\right)^2=\left(4x+y\right)^2\)
a,9a2-30a+25
=(3a)2-30a+52
=(3a-5)2
b,1+4x+4x2
=4x2+4x+1
=(2x)2+4x+12
=(2x+1)2
c,a2+16+8a
=a2+8a+16
=a2+8a+42
=(a+2)2
d,25x2+4y2-20xy
=25x2-20xy+4y2
=(5x)2-20xy+(2y)2
=(5x-2y)2
a) \(\frac{1}{9}x^4-2x^2y+9y^2=\left(\frac{1}{3}\right)^2\left(x^2\right)^2-2x^2y+\left(3y\right)^2\)
\(=\left(\frac{1}{3}x^2\right)^2-2\frac{1}{3}x^23y+\left(3y\right)^2\)
\(=\left(\frac{1}{3}x^2-3y\right)^2\)
b) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)
\(\frac{1}{9}x^4-2x^2y+9y^2\)
\(=\left(\frac{1}{3}x^2\right)^2-2\times\frac{1}{3}x^2\times3y+\left(3y\right)^2\)
\(=\left(\frac{1}{3}x^2-3y\right)^2\)
\(25x^2-20xy+4y^2\)
\(=\left(5x\right)^2-2\times5x\times2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)