phân tích hạng tử thành nhân tử
1)4x^2+4x+1-9y^2
2) x^2+2xy +y^2-z^2+2zt-t^2
3) 9x^2-9xy-7x+7y
4) 3x-3y+ax-ay
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(x+2-y\right)\left(x+2+y\right)\)
c: \(=\left(x-y\right)^2\)
a) \(4x^2+4x-3\)
\(=4x^2-2x+6x-3\)
\(=2x\left(2x-1\right)+3\left(2x-1\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)
b) \(2x^2+xy-y^2\)
\(=2x^2+2xy-xy-y^2\)
\(=2x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(2x-y\right)\left(x+y\right)\)
a) Ta có: \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)
\(=\left(-6x-18\right)\left(8x^2-18\right)\)
\(=-6\left(x+3\right)\cdot2\left(4x^2-9\right)\)
\(=-12\left(x+3\right)\left(2x-3\right)\left(2x+3\right)\)
b) Ta có: \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=-\left(x+3y+5\right)\left(7x+9y-1\right)\)
c) Ta có: \(-4x^2+12xy-9y^2+25\)
\(=-\left(4x^2-12xy+9y^2-25\right)\)
\(=-\left[\left(2x-3y\right)^2-25\right]\)
\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)
d) Ta có: \(x^2-2xy+y^2-4m^2+4mn-n^2\)
\(=\left(x^2-2xy+y^2\right)-\left(4m^2-4mn+n^2\right)\)
\(=\left(x-y\right)^2-\left(2m-n\right)^2\)
\(=\left(x-y-2m+n\right)\left(x-y+2m-n\right)\)
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
48. Phân tích các đa thức sau thành nhân tử:
a) x2 + 4x – y2 + 4; b) 3x2 + 6xy + 3y2 – 3z2;
c) x2 – 2xy + y2 – z2 + 2zt – t2.
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
a) \(x^2+4x-y^2+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left(x-y-z+t\right)\left(x-y+z-t\right)\)
21, \(x^3-4x^2+4x=x\left(x^2-4x+4\right)=x\left(x-2\right)^2\)
22, \(15x^2y+20xy^2-25xy=5xy\left(3x+4y-5\right)\)
23, \(4x^2+8xy-3x-6y=4x\left(x+2y\right)-3\left(x+2y\right)=\left(4x-3\right)\left(x+2y\right)\)
24, \(x^3-6x^2+9x=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)
Tương tự :))
21.\(x^3-4x^2+4x\)
\(=x\left(x^2-4x+4\right)\)
\(=x\left(x-2\right)^2\)
22,\(15x^2y+20xy^2-25xy\)
\(=5xy\left(3x+4y-5\right)\)
23,\(4x^2+8xy-3x-6y\)
\(=4x\left(x+2y\right)-3\left(x+2y\right)\)
\(=\left(4x-3\right)\left(x+2y\right)\)
24\(x^3-6x^2+9x\)
\(=x\left(x^2-6x+9\right)\)
\(=x\left(x-3\right)^2\)
25,\(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
26.\(xy-2x-y^2+2y\)
\(=x\left(x-2\right)-y\left(y-2\right)\)
\(=\left(x-y\right)\left(x-2\right)\)
27,\(x^2+x-xy-y\)
\(=\left(x^2-xy\right)+\left(x-y\right)\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
28,\(x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
29.\(x^2-2xy+y^2-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
\(a,=xy\left(x+2y+1\right)\\ b,=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\\ c,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ d,=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=\left(x-2\right)\left(x+2+x-2\right)=2x\left(x-2\right)\\ e,=\left(x+1\right)^2-y^2=\left(x+y+1\right)\left(x-y+1\right)\\ g,=\left(x+9-6x\right)\left(x+9+6x\right)=\left(9-5x\right)\left(7x+9\right)\\ h,=\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\\ i,=\left(x-1\right)^3-y^3=\left(x-y-1\right)\left(x^2-2x+1+xy+y+y^2\right)\)
1) x2 - x - y2 - y = (x - y)(x + y) - (x + y) = (x - y - 1)(x + y)
2. x2 - 2xy + y2 - z2 = (x - y)2 - z2 = (x - y - z)(x - y + z)
3. 5x - 5y + ax - ay = 5(x - y) + a(x - y) = (a + 5)(x - y)
4. a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)
5. 4x2 - y2 + 4x + 1 = (2x + 1)2 - y2 = (2x + 1 - y)(2x + y + 1)
6. x3 - x + y3 - y = (x + y)(x2 - xy + y2) - (x + y) = (x + y)(x2 - xy + y2 - 1)
Trả lời:
1, x2 - x - y2 - y
= ( x2 - y2 ) - ( x + y )
= ( x - y ) ( x + y ) - ( x + y )
= ( x + y ) ( x - y - 1 )
2, x2 - 2xy + y2 - z2
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - x2
= ( x - y - z ) ( x - y + z )
3, 5x - 5y + ax - ay
= ( 5x + ax ) - ( 5y + ay )
= x ( 5 + a ) - y ( 5 + a )
= ( 5 + a ) ( x - y )
= ( 5 + a ) ( x - y )
4, a3 - a2x - ay + xy
= ( a3 - a2x ) - ( ay - xy )
= a2 ( a - x ) - y ( a - x )
= ( a - x ) ( a2 - y )
5, 4x2 - y2 + 4x + 1
= ( 4x2 + 4x + 1 ) - y2
= ( 2x + 1 )2 - y2
= ( 2x + 1 - y ) ( 2x + 1 + y )
6, x3 - x + y3 - y
= ( x3 + y3 ) - ( x + y )
= ( x + y ) ( x2 - xy + y ) - ( x + y )
= ( x + y ) ( x2 - xy + y - 1 )
1 \(=\left(4x^2+4x+1\right)-\left(3y\right)^2\)
\(=\left(2x+1\right)^2-\left(3y\right)^2\)
\(=\left(2x+1-3y\right)\left(2x+1+3y\right)\)
2,\(=\left(x^2+2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x+y\right)^2-\left(z-t\right)^2\)
\(=\left(x+y+z-t\right)\left(x+y-z+t\right)\)
3,\(=9x\left(x-y\right)-7\left(x-y\right)\)
\(=\left(x-y\right)\left(9x-7\right)\)
4\(=3\left(x-y\right)+a\left(x-y\right)\)
\(=\left(x-y\right)\left(3+a\right)\)