a,b,c khác 0 và a^3+b^3+c^3=3abc tính A= (a+a/b) * ( 1+ b/c )*(1+c/a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^3+b^3+c^3=3abc\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)\cdot c+c^2\right]-3ab\left(a+b+c\right)=0\)\(\Rightarrow\left(a+b+c\right)\left[a^2+b^2+2ab-ac-bc+c^2\right]-3ab\left(a+b+c\right)=0\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\left(1\right)\\a^2+b^2+c^2-ab-bc-ca=0\left(2\right)\end{matrix}\right.\)
Từ (1) \(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{a+b}{b}\right)\cdot\left(\dfrac{b+c}{c}\right)\cdot\left(\dfrac{c+a}{a}\right)=\left(\dfrac{-c}{b}\right)\cdot\left(-\dfrac{a}{c}\right)\cdot\left(-\dfrac{b}{a}\right)=-1\)
Từ (2) \(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0\) \(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\c=b\\a=c\end{matrix}\right.\) \(\Rightarrow a=b=c\) \(\Rightarrow P=\left(\dfrac{a+b}{b}\right)\cdot\left(\dfrac{b+c}{c}\right)\cdot\left(\dfrac{c+a}{a}\right)=\dfrac{2b}{b}\cdot\dfrac{2c}{c}\cdot\dfrac{2a}{a}=8\)
Vậy...
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\cdot\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\2a^2+2b^2+2c^2-2ab-2ac-2bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2-2ab+b^2+a^2-2ac+c^2+b^2-2bc+c^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\end{matrix}\right.\)
Ta có: \(B=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
\(\Leftrightarrow B=\dfrac{a+b}{b}\cdot\dfrac{b+c}{c}\cdot\dfrac{a+c}{a}\)
Trường hợp 1: a+b+c=0
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)
Thay a+b=-c; b+c=-a và c+a=-b vào biểu thức \(B=\dfrac{a+b}{b}\cdot\dfrac{b+c}{c}\cdot\dfrac{a+c}{a}\), ta được:
\(B=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}=\dfrac{-\left(a\cdot b\cdot c\right)}{abc}=-1\)
Trường hợp 2: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)
Ta có: \(B=\dfrac{a+b}{b}\cdot\dfrac{b+c}{c}\cdot\dfrac{a+c}{a}\)
mà a=b=c(cmt)
nên \(B=\dfrac{b+b}{b}\cdot\dfrac{c+c}{c}\cdot\dfrac{a+a}{a}=\dfrac{2b}{b}\cdot\dfrac{2c}{c}\cdot\dfrac{2a}{a}=2\cdot2\cdot2=8\)
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\2a^2+2b^2+2c^2-2ab-2bc-2ca=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
bạn thay vào M giải tiếp nha
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a^3+b^3\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Nếu \(a^2+b^2+c^2-ab-bc-ca\)
\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\left(\forall a,b,c\right)\)
Dấu "=" xảy ra khi: a = b = c
Khi đó: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)^3=8\)
Nếu \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{-abc}{abc}=-1\)
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
\(TH1:a+b+c=0\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\)
\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)
\(TH2:a^2+b^2+c^2-ab-ac-bc=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\\left(b-c\right)^2\ge0\forall b;c\\\left(c-a\right)^2\ge0\forall a;c\end{cases}}\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a;b;c\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow}\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)
\(\Rightarrow\frac{a}{b}=1;\frac{b}{c}=1;\frac{c}{a}=1\)
\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Vậy .......................
CM a + b + c = 0
=> a + b = -c ; b + c = -a ; c+a a = -b
E = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=1\)
Như thế này :
\(a^3+b^3+c^3=3abc\)
=> (a+b)^3 - 3ab(a+b) - 3abc + c^3 = 0
=> ( a+ b +c )^3 - 3(a+b)c(a+b+c) - 3ab(a+b+c) = 0
=> \(\left(a+b+c\right)\left[\left(a+b+c\right)^2-3bc-3ac-3ab\right]=0\)
=> ( a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca ) = 0
=> 1/2 ( a + b + c )(2a^2 + 2b^2 + 2x^2 - 2ab - 2bc - 2 ca ) = 0
=> 1/2 (a+b+c) [ ( a- b)^2 + ( b - c)^2 + (c-a)^2] = 0
Bì ngoặc thứ hai luôn >= 0 => a + b + c = 0
hoặc a = b ; b =c = c=a => a = =b =c
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[a^2+2ab+b^2-ac-bc+c^2-3ab\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\cdot\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
Ta có: \(N=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
\(=\dfrac{a+b}{b}\cdot\dfrac{b+c}{c}\cdot\dfrac{a+c}{a}\)
Trường hợp 1: a+b+c=0
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
\(\Leftrightarrow N=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}=\dfrac{-\left(a\cdot b\cdot c\right)}{a\cdot b\cdot c}=-1\)
Trường hợp 2: a=b=c
\(\Leftrightarrow N=\dfrac{b+b}{b}\cdot\dfrac{a+a}{a}\cdot\dfrac{c+c}{c}=2\cdot2\cdot2=8\)
1, Ta có a^3+b^3+c^3=3abc
-> a^3+b^3+c^3+3a^2b+3ab^2=3abc+3a^2b+3ab^2
-> (a+b)3 + c^3 - 3ab(a+b+c)=0
-> (a+b+c). ((a+b)^2-(a+b).c+c^2)-3ab(a+b+c)=0
-> (a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)=0
Th1: a+b+c=0
->P= a+b/2 . b+c/2 . c+a/2
= (-c)(-a)(-b)/2=-1
TH2 a^2+b^2+c^2-ab-bc-ca=0
->2a^2+2b^2+2c^2-2ab-abc-2ac=0
->(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)=0
-> (a-b)^2+(a-c)^2+(b-c)^2=0
Mà (a-b)^2+(a-c)^2+(b-c)^2>= 0
Dấu = xảy ra (=)a-b=0
b-c=0
a-c=0
-> a=b=c
->P= 1+a/b+1+b/c+1+c/a=2+2+2= 8
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Với \(a+b+c=0\)
Làm nốt lười quá
Có :\(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Xét \(a+b+c=0\)\(\Rightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}-a=b+c\\-b=c+a\\-c=a+b\end{cases}}\)
\(\Rightarrow A=\left(\frac{b+a}{b}\right)\left(\frac{c+b}{c}\right)\left(\frac{a+c}{a}\right)=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)
Xét \(\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0-\forall a,b,c\in R\)
\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)
\(\Rightarrow A=\left(1+\frac{a}{a}\right)\left(1+\frac{b}{b}\right)\left(1+\frac{c}{c}\right)\)
\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
Vậy\(A=-1\)hoặc\(A=8\)