Tìm x , y , z biết :
4x = 2y =3z và 2x -3y +z = 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x = 3y =7z và x+y-z =58
\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)
\(\frac{x}{21}=2\Rightarrow x=21\cdot2=42\)
\(\frac{y}{14}=2\Rightarrow y=14\cdot2=28\)
\(\frac{z}{6}=2\Rightarrow z=6\cdot2=12\)
a)\(\left|x-2y\right|=5\Rightarrow\left[\begin{matrix}x-2y=5\\x-2y=-5\end{matrix}\right.\)
Từ \(2x=3y=5z\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)\(\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)
Nếu x-2y=5
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}=\frac{x-2y}{15-20}=\frac{5}{-5}-1\)
\(\Rightarrow\left\{\begin{matrix}x=-15\\y=-10\\z=-6\end{matrix}\right.\)
Nếu x-2y=-5
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)
\(\Rightarrow\left\{\begin{matrix}x=15\\y=10\\z=6\end{matrix}\right.\)
Vậy có 2 bộ (x,y,z). Đó là (-15;-10;-6), (15;10;6)
b) Từ \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\)\(\Rightarrow\frac{x}{6}=\frac{y}{15}\left(1\right)\)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\)\(\Rightarrow\frac{x}{6}=\frac{z}{4}\left(2\right)\)
Từ (1),(2)\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)
Đặt\(\)\(\frac{x}{6}=\frac{y}{15}=\frac{x}{4}=k\)
\(\Rightarrow\left\{\begin{matrix}x=6k\\y=15k\\z=4k\end{matrix}\right.\Rightarrow xy=90k^2\)
\(\Rightarrow90k^2=90\Rightarrow k^2=1\Rightarrow\left[\begin{matrix}k=1\\k=-1\end{matrix}\right.\)
Với k=1\(\Rightarrow\)\(\left\{\begin{matrix}x=6\\y=15\\z=4\end{matrix}\right.\)
Với k=-1\(\Rightarrow\left\{\begin{matrix}x=-6\\y=-15\\z=-4\end{matrix}\right.\)
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
Vì x/2 = y/3 nên x/8=y/12 ( nhân hai vế với 1/4) (1)
Vì y /4 =z/5 nên y/12 = z/15 ( nhân hai vế với 1/3) (2)
Từ (1) và (2) suy ra x/8=y/12=z/15
Theo tính chất dãy tỉ số bằng nhau
x/8=y/12=z/15= (x-2y+3z)/(8-2.12+3.15) = 92/ 29
suy ra x = (92.8):29 ; y = (92.12): 29; z = (92. 15) :29
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{2y}{24}=\frac{3z}{45}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{2y}{24}=\frac{3z}{45}=\frac{x-2y+3z}{8-24+45}=\frac{92}{29}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{92}{29}\\\frac{y}{12}=\frac{92}{29}\\\frac{z}{15}=\frac{92}{29}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{736}{29}\\y=\frac{1104}{29}\\z=\frac{1380}{29}\end{cases}}}\)
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{\left(x-1\right)-2.\left(y-2\right)+3.\left(z-3\right)}{2-2.3+3.4}\)
\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{8}\)
\(=\frac{14-6}{8}=1\)
suy ra: \(\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow x=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)
x=3,y=6,z=4
Ta có : \(4x=2y=3z\)
\(\Rightarrow\frac{4x}{12}=\frac{2y}{12}=\frac{3z}{12}\) \(\Leftrightarrow\frac{x}{3}=\frac{y}{6}=\frac{z}{4}\)
Đặt \(\frac{x}{3}=\frac{y}{6}=\frac{z}{4}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=6k\\z=4k\end{cases}}\)
Mà \(2x-3y+z=16\)
\(\Rightarrow2.3k-3.6k+4k=16\)
\(\Leftrightarrow6k-18k+4k=16\)
\(\Leftrightarrow k.\left(6-18+4\right)=16\)
\(\Leftrightarrow-8k=16\)
\(\Leftrightarrow k=-2\)
\(\Rightarrow\hept{\begin{cases}x=3k=-6\\y=6k=-12\\z=4k=-8\end{cases}}\)
Vậy ...