y=x³-3mx²+3(3m-4)x+2. Tìm m để a)Hàm số đồng biến với mọi x thuộc (trừ âm vô cùng;1) b) Hàm số đồng biến với mọi x thuộc (2; dương vô cùng)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=x^2-2\left(m-2\right)x+m^2-3m+2\)
a. Hàm đồng biến trên khoảng đã cho khi và chỉ khi:
\(y'\ge0\) ; \(\forall x>3\)
\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x>3\)
Ta có: \(\Delta'=\left(m-2\right)^2-\left(m^2-3m+2\right)=-m+2\)
TH1: \(\Delta'\le0\Leftrightarrow m\ge2\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-3m+2-4\left(m-2\right)+4\ge0\\2\left(m-2\right)< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-7m+4\ge0\\m< 4\end{matrix}\right.\) \(\Leftrightarrow m< 2\)
Kết hợp lại ta được hàm đồng biến trên \(\left(2;+\infty\right)\) với mọi m
b.
Hàm số đồng biến trên khoảng đã cho khi và chỉ khi:
\(y'\ge0\) ; \(\forall x< 0\)
\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x< 0\)
TH1: \(\Delta'=-m+2\le0\Leftrightarrow m\ge2\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1+x_2=2\left(m-2\right)>0\\x_1x_2=m^2-3m+2\ge0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Kết hợp lại ta được: \(m\ge2\)
`y=(mx+9)/(x+m)`
`y'=(m^2-9)/((x+m)^2)`
`y' > 0 forall x \in (2;+\infty)<=>` $\begin{cases}m^2-9>0\\-m ∉ (2;+\infty)\\\end{cases}$ `<=>` $\begin{cases}m>3 \vee m <-3\\ m≥2\\\end{cases}$ `<=>m>3`
Vậy `m>3`.
1.
\(y'=m-3cos3x\)
Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)
\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)
\(\Leftrightarrow m\ge3\)
2.
\(y'=1-m.sinx\)
Hàm đồng biến trên R khi và chỉ khi:
\(1-m.sinx\ge0\) ; \(\forall x\)
\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)
- Với \(m=0\) thỏa mãn
- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)
\(\Rightarrow m\ge-1\)
- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)
\(\Rightarrow m\le1\)
Kết hợp lại ta được: \(-1\le m\le1\)
Để hàm số đồng biến với mọi x > 0 thì a > 0
nên 4 – 3m > 0 ⇔ 4 > 3m
⇔ 3m < 4 ⇔ m < 4 3
Vậy m < 4 3 thỏa mãn điều kiện đề bài
Đáp án cần chọn là: C
\(y'=-x^2+2\left(m-3\right)x+m+4\)
a.
Hàm nghịch biến trên khoảng đã cho khi và chỉ khi: với mọi \(x\in\left(-1;3\right)\) ta có:
\(f\left(x\right)=-x^2+2\left(m-3\right)x+m+4\le0\)
\(\Delta'=\left(m-3\right)^2+m+4=m^2-5m+13>0\) ; \(\forall m\)
Bài toán thỏa mãn khi:
\(\left[{}\begin{matrix}3\le x_1< x_2\\x_1< x_2\le-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}f\left(3\right)\le0\\\dfrac{x_1+x_2}{2}>3\end{matrix}\right.\\\left\{{}\begin{matrix}f\left(-1\right)\le0\\\dfrac{x_1+x_2}{2}< -1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}7m-23\le0\\m-3>3\end{matrix}\right.\\\left\{{}\begin{matrix}-m+9\le0\\m-3< -1\end{matrix}\right.\end{matrix}\right.\)
Không tồn tại m thỏa mãn
b.
Hàm nghịch biến trên khoảng đã cho khi và chỉ khi:
\(\forall x\in\left(2;4\right)\) ta có:
\(-x^2+2\left(m-3\right)x+m+4\le0\)
\(\Leftrightarrow x^2+6x-4\ge m\left(2x+1\right)\)
\(\Leftrightarrow m\le\dfrac{x^2+6x-4}{2x+1}\)
\(\Leftrightarrow m\le\min\limits_{\left[2;4\right]}\dfrac{x^2+6x-4}{2x+1}\)
Xét hàm \(f\left(x\right)=\dfrac{x^2+6x-4}{2x+1}\) trên \(\left[2;4\right]\)
\(f'\left(x\right)=\dfrac{x^2+x+7}{2\left(2x+1\right)^2}>0\) ; \(\forall x\Rightarrow f\left(x\right)\) đồng biến
\(\Rightarrow m\le f\left(2\right)=\dfrac{12}{5}\)
Hàm số luôn âm khi ∆ < 0
⇔1 + 4(3m + 1) < 0
⇔12m + 5 < 0
⇔ 12m < -5
⇔ m < -5/12
Vậy m < -5/12 thì hàm số luôn âm
Câu 1:
a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)
\(\Leftrightarrow3m< -5\)
hay \(m< -\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)
b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì
3m+5>0
\(\Leftrightarrow3m>-5\)
hay \(m>-\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)
2.
Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)
\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)
\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)
Để hàm đồng biến khi x>0
\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)
\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)
\(y'=3x^2-6mx+3\left(3m-4\right)=3\left[x^2-2mx+3m-4\right]\)
Xét \(f\left(x\right)=x^2-2mx+3m-4\)
\(\Delta'=m^2-3m+4=\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\) ;\(\forall m\)
a. Để hàm số đồng biến trên khoảng đã cho
\(\Leftrightarrow x^2-2mx+3m-4\ge0\) ; \(\forall x\le1\)
\(\Leftrightarrow1\le x_1< x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}>1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m-4-2m+1\ge0\\2m>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge3\\m>1\end{matrix}\right.\) \(\Rightarrow m\ge3\)
b.
Để hàm đồng biến trên khoảng đã cho
\(\Leftrightarrow x^2-2mx+3m-4\ge0\) ; \(\forall x\ge2\)
\(\Leftrightarrow x_1< x_2\le2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m-4-4m+4\ge0\\2m< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le0\\m< 2\end{matrix}\right.\) \(\Rightarrow m\le0\)