các bạn cho mình hỏi bất đẳng thức cô-si như nào mai mình thi rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2+2ab\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
Có : \(a,b\ge0\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) ( đpcm )
Vậy ...
bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng
Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau
BĐT Cosi cho 2 số a,b >0:
a + b >= 2căn(ab)
di từ: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 )
<=> a + b - 2√(ab) ≥ 0
<=> a + b ≥ 2√(ab)
dau "=" xay ra khi √a - √b = 0 <=> a = b
(a+b)/2 >=Cab(C là căn)
a+b>=2*Cab
(a+b)^2>=4*ab
a^2+2ab+b^2-4ab>=0
a^2-2ab+b^2>=0
(a-b)^2>=0(luôn đúng)
vây ta được điều cm
Đây chính là bất đẳng thức côsi 2 số mà bạn
(a+b)/2 >=Cab(C là căn)
a+b>=2*Cab
(a+b)^2>=4*ab
a^2+2ab+b^2-4ab>=0
a^2-2ab+b^2>=0
(a-b)^2>=0(luôn đúng)
vây ta được điều cm
Đây chính là bất đẳng thức côsi 2 số mà bạn
Bài làm:
Ta có: \(A=x+\frac{1}{x^2}=\left(\frac{1}{x^2}+\frac{x}{8}+\frac{x}{8}\right)+\frac{3}{4}x\ge3\sqrt[3]{\frac{1}{x^2}.\frac{x}{8}.\frac{x}{8}}+\frac{3}{4}.2\)
\(=3.\frac{1}{4}+\frac{3}{2}=\frac{3}{4}+\frac{3}{2}=\frac{9}{4}\)
Dấu "=" xảy ra khi: \(\frac{1}{x^2}=\frac{x}{8}\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Vậy \(Min\left(A\right)=\frac{9}{4}\)khi \(x=2\)
Học tốt!!!!
Bất đẳng thức Cosi là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của 2 số thực a, b không âm: a+b2≥ab−−√
Dấu bằng xảy ra khi và chỉ khi a = b
rồi với 3 số thực a, b, c không âm: a+b+c3≥abc−−−√3
Dấu bằng xảy ra khi và chỉ khi a = b = c
rồi với 4 số thực a, b, c, d không âm: a+b+c+d4≥abcd−−−−√4
Dấu bằng xảy ra khi và chỉ khi a = b = c = d
Với n số thức không âm x1,x2,x3,…xn: x1+x2+x3+…+xnn≥x1x2x3…xn−−−−−−−−−−√n
Dấu bằng xảy ra khi và chỉ khi x1=x2=x3=…=xn