Tìm x biết :
\(\frac{10}{1\times2}+\frac{10}{2\times3}+...+\frac{10}{x\times\left(x+1\right)}=9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> (1-1/10)(x-1)+x/10=x-9/10
<=> 9x/10-9/10+x/10=x-9/10
<=> x=x
Như vậy, phương trình thỏa mãn với mọi x
\(\frac{2}{5}x+\frac{3}{10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{9}-\frac{1}{10}\)
\(\frac{2}{5}x+\frac{3}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(\frac{2}{5}x=\frac{9}{10}-\frac{3}{10}=\frac{3}{5}\)
\(x=\frac{\frac{3}{5}}{\frac{2}{5}}=\frac{3}{2}\)
Ta có: \(\frac{1}{1x2}\)+ \(\frac{1}{2x3}\)+ \(\frac{1}{3x4}\)+ \(\frac{1}{4x5}\)+ .....+ \(\frac{1}{9x10}\)
= \(1-\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
= 1 - \(\frac{1}{10}\)
= \(\frac{9}{10}\)
1-1/x+1=2015/2016
=>1/x+1=1-2015/2016=1/2016
=>x+1=2016=>x=2015
mình không ghi lại đề nha:
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
<=>\(1-\frac{1}{x+1}=\frac{2015}{2016}\)
<=>\(\frac{x}{x+1}=\frac{2015}{2016}\)
=>x=
Đến đó bạn tự giải tiếp ha
Ở link này có bài tham khảo nè bn :
http://olm.vn/hoi-dap/detail/42438427638.html
\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\right)\cdot x=2009\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\right)\cdot x=2009\)
\(\left(1-\frac{1}{2010}\right)\cdot x=2009\)
\(\frac{2009}{2010}\cdot x=2009\)
\(x=2009:\frac{2009}{2010}\)
\(x=2010\)
\(\Leftrightarrow10\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{x\times\left(x+1\right)}\right)=9\)
\(\Leftrightarrow\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=9\div10\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{9}{10}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{10}\)
\(\Rightarrow x+1=10\)
\(\Leftrightarrow x=9\)
Vậy x = 9