chứng minh rằng \(\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo GT : \(xy+yz+xz=3xyz\Rightarrow\frac{xy+yz+xz}{xyz}=3\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
\(\frac{x^3}{x^2+z}=\frac{x\left(x^2+z\right)}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\ge x-\frac{xz}{2x\sqrt{z}}=x-\frac{\sqrt{z}}{2}\)
Tương tự , ta có : \(\frac{y^3}{y^2+x}\ge y-\frac{\sqrt{x}}{2}\) ; \(\frac{z^3}{z^2+y}\ge z-\frac{\sqrt{y}}{2}\)
\(\Rightarrow\frac{x^3}{x^2+z}+\frac{y^3}{y^2+z}+\frac{z^3}{z^2+y}\ge x+y+z-\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{2}\)
Vì x ; y ; z dương , áp dụng BĐT Cô - si , ta có :
\(x+1\ge2\sqrt{x};y+1\ge2\sqrt{y};z+1\ge2\sqrt{z}\)
\(\Rightarrow x+y+z+3\ge2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
=> \(\frac{x+y+z+3}{2}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\) => BĐT được c/m
Tiếp tục AD BĐT Cô - si , ta có :
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)
\(\Rightarrow x+y+z\ge\frac{9}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=\frac{9}{3}=3\) => BĐT được c/m
Có : \(\frac{x^3}{x^2+z}+\frac{y^3}{y^2+x}+\frac{z^3}{z^2+y}\ge x+y+z-\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{2}\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{2}\ge\frac{3.3-3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)
Vậy ...
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\text{VT}=x-\frac{x}{x^2+z}+y-\frac{y}{y^2+x}+z-\frac{z}{z^2+y}=(x+y+z)-\left(\frac{x}{x^2+z}+\frac{y}{y^2+x}+\frac{z}{z^2+y}\right)\)
\(\geq (x+y+z)-\left(\frac{x}{2\sqrt{x^2z}}+\frac{y}{2\sqrt{y^2x}}+\frac{z}{2\sqrt{z^2y}}\right)=(x+y+z)-\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)(1)\)
Từ giả thiết \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Cauchy-Schwarz:
\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3(2)\)
\(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2\leq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(1+1+1)=9\)
\(\Rightarrow \left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\leq 3(3)\)
Từ \((1);(2);(3)\Rightarrow \text{VT}\geq 3-\frac{1}{2}.3=\frac{3}{2}\)
Mặt khác: \(\text{VP}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{2}\)
Do đó \(\text{VT}\geq \text{VP}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z=1$
\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
\(=\frac{y^2z^2}{x\left(y+z\right)}+\frac{z^2x^2}{y\left(z+x\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)
\(\ge\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)
Theo AM - GM và Bunhiacopski ta có được
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)
Khi đó \(LHS\ge\left[\frac{\left(x+y\right)^2}{2}+z^2\right]\left[\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right]\)
\(\)\(=\left[\frac{1}{2}+\left(\frac{z}{x+y}\right)^2\right]\left[8+\left(\frac{x+y}{z}\right)^2\right]\)
Đặt \(t=\frac{z}{x+y}\ge1\)
Khi đó:\(LHS\ge\left(\frac{1}{2}+t^2\right)\left(8+\frac{1}{t^2}\right)=8t^2+\frac{1}{2t^2}+5\)
\(=\left(\frac{1}{2t^2}+\frac{t^2}{2}\right)+\frac{15t^2}{2}+5\ge\frac{27}{2}\)
Vậy ta có đpcm
Ta có:
\(VT-VP=\frac{\left(x^2+y^2\right)\left(\Sigma xy\right)\left(\Sigma x\right)\left[z\left(x+y\right)-xy\right]\left(z-x-y\right)}{x^2y^2z^2\left(x+y\right)^2}+\frac{\left(x-y\right)^2\left(2x+y\right)^2\left(x+2y\right)^2}{2x^2y^2\left(x+y\right)^2}\ge0\)
Vì \(z\left(x+y\right)-xy\ge\left(x+y\right)^2-xy\ge4xy-xy>0\)
Ta có \(1+x^2=x^2+xy+yz+xz=\left(x+z\right)\left(x+y\right)\)
Khi đó BĐT <=>
\(\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+z\right)\left(x+z\right)}+\frac{1}{\left(x+y\right)\left(y+z\right)}\ge\frac{2}{3}\left(\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}+...\right)\)
<=> \(\frac{x+y+z}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\frac{x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}}{\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}\right)^3\)
<=>\(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\ge\frac{1}{3}\left(x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}\right)^3\)
<=> \(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\right)^3\)(1)
Xét \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)
<=> \(9\left[xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\right]\ge8\left(xy\left(x+y\right)+xz\left(x+z\right)+yz\left(y+z\right)+3xyz\right)\)
<=> \(xy\left(y+x\right)+yz\left(y+z\right)+xz\left(x+z\right)\ge6xyz\)
<=> \(x\left(y-z\right)^2+z\left(x-y\right)^2+y\left(x-z\right)^2\ge0\)luôn đúng
Khi đó (1) <=>
\(\left(x+y+z\right).\frac{2\sqrt{2}}{3}.\sqrt{x+y+z}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+....\right)^3\)
<=> \(\sqrt{2\left(x+y+z\right)}\ge\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\)
Áp dụng buniacopxki cho vế phải ta có
\(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\le\sqrt{\left(x+y+z\right)\left(3-xy-yz-xz\right)}\)
\(=\sqrt{2\left(x+y+z\right)}\)
=> BĐT được CM
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
thế nào nhỉ ( :
Từ giả thiết => 1/x +1/y +1/z <= 1
A/d BĐT 1/(x +y+z) <= 1/9 ( 1/x + 1/y +1/z ) và 1/(x+y) <= 1/4 ( 1/x +1/y )
=> 1/(4x + y+z) = 1/(x+x + y+x + z+x) <= 1/9 ( 1/2x + 1/(y+x) + 1/(z+x) ) <= 1/9 ( 1/(2x) + 1/4(1/y +1/x) + 1/4(1/x + 1/z))
Tương tự cộng lại và sử dụng 1/x +1/y +1/z <= 1
được P <= 1/6(1/x +1/y +1/z) <= 1/6 ĐPCM.
Lời giải bài này khá dài, làm biếng gõ
Bạn lên google search "đề thi vào 10 chuyên khtn" nhé, đây là bài BĐT trong đề vòng 1 chuyên KHTN năm 2019
Ta có:
\( 1 + {x^2} = \left( {x + y} \right)\left( {x + z} \right)\\ 1 + {y^2} = \left( {x + y} \right)\left( {y + z} \right)\\ 1 + {z^2} = \left( {x + z} \right)\left( {y + z} \right) \)
Nên: \(\dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}} = \dfrac{1}{{\left( {x + y} \right)\left( {x + z} \right)}} + \dfrac{1}{{\left( {x + y} \right)\left( {y + z} \right)}} + \dfrac{1}{{\left( {x + z} \right)\left( {y + z} \right)}} = \dfrac{{2\left( {x + y + z} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right)}}\)
\( \dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }} = \dfrac{x}{{\sqrt {\left( {x + y} \right)\left( {x + z} \right)} }} + \dfrac{y}{{\sqrt {\left( {x + y} \right)\left( {y + z} \right)} }} + \dfrac{z}{{\left( {x + z} \right)\left( {y + z} \right)}}\\ \dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }} \le \dfrac{1}{2}\left( {\dfrac{x}{{x + y}} + \dfrac{x}{{x + z}} + \dfrac{y}{{x + y}} + \dfrac{y}{{y + z}} + \dfrac{z}{{x + z}} + \dfrac{z}{{y + z}}} \right) \)
Mặt khác, áp dụng $Bunhia$ ta có:
\({\left( {\dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }}} \right)^2} \le \left( {x + y + z} \right)\left( {\dfrac{x}{{1 + {x^2}}} + \dfrac{y}{{1 + {y^2}}} + \dfrac{z}{{1 + {z^2}}}} \right) = M\)
Với \(M = \dfrac{{2\left( {x + y + z} \right)\left( {xy + yz + xz} \right)}}{{\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}} = \dfrac{{2\left( {x + y + z} \right)}}{{\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}}\)
Lại có:
\( VP = \dfrac{2}{3}{\left( {\dfrac{x}{{1 + {x^2}}} + \dfrac{y}{{1 + {y^2}}} + \dfrac{z}{{1 + {z^2}}}} \right)^3} = \dfrac{2}{3}{\left( {\dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}}} \right)^2}\\ VP \le \dfrac{{4\left( {x + y + z} \right)}}{{3\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}}.\dfrac{3}{2} = \dfrac{{2\left( {x + y + z} \right)}}{{\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}} = \dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}} \)
Vậy \(\dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}} \ge \dfrac{3}{2}{\left( {\dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }}} \right)^2}\)
Dấu \("= "\) xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
Theo giả thiết xy + yz + zx = 1 nên ta có: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}=\frac{1}{xy+yz+zx+x^2}+\frac{1}{xy+yz+zx+y^2}+\frac{1}{xy+yz+zx+z^2}=\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+x\right)\left(y+z\right)}+\frac{1}{\left(z+x\right)\left(z+y\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Theo bất đẳng thức Cauchy-Schwarz: \(\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^2\le\left(x+y+z\right)\left(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\right)=\left(x+y+z\right)\left(\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right)=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(\Rightarrow\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\le\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)Ta cần chứng minh: \(\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)
hay \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\le\frac{3}{2}\)
Bất đẳng thức cuối đúng theo AM - GM do: \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+z}.\frac{y}{x+y}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\le\frac{\left(\frac{x}{x+y}+\frac{x}{x+z}\right)+\left(\frac{y}{y+z}+\frac{y}{x+y}\right)+\left(\frac{z}{z+x}+\frac{z}{z+y}\right)}{2}=\frac{3}{2}\)Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
tau không biết nhà xin lỗi