K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2018

=> ĐK:  \(x\ne\left\{0;-1;-2;...;-99;-100\right\}\)

Đây là dạng dãy số đặc biệt, bạn có thể giải như sau:

Ta có:

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+99\right)\left(x+100\right)}=\frac{100}{101}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{100}{101}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+100}=\frac{100}{101}\)

\(\Leftrightarrow\frac{x+100-x}{x.\left(x+100\right)}=\frac{100}{101}\)

\(\Leftrightarrow\frac{100}{x^2+100x}=\frac{100}{101}\)

\(\Leftrightarrow x^2+100x=101\)

\(\Leftrightarrow x^2+100x-101=0\)

\(\Leftrightarrow x^2+101x-x-101=0\)

\(\Leftrightarrow x\left(x+101\right)-\left(x+101\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+101\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+101=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(n\right)\\x=-101\left(n\right)\end{cases}}\)

Vậy: S={1;-101)

9 tháng 6 2018

\(\frac{\left(x+1\right)-x}{x\left(x+1\right)}+\frac{\left(x+2\right)-\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}+...+\frac{\left(x+100\right)-\left(x+99\right)}{\left(x+99\right)\left(x+100\right)}=\frac{100}{101}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{100}{101}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+100}=\frac{100}{101}\)
Tự giải nha

9 tháng 6 2018

1/x -1/x+100 = 100/101

23 tháng 5 2016

Nhận xét :

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

Vì \(x\ge0\) nên pt a) tương đương với : \(100x+\frac{1+2+3+...+100}{101}=101x\)

\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)

23 tháng 5 2016

b) 

Tương tự câu a) , phương trình tương đương với : 

\(49x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{...1}{97.99}=50x\)

\(\Rightarrow x=\frac{97}{195}\)

20 tháng 3 2020

Đúng là chơi lừa bịp thực sự bài này rất dễ đây là cách giải:

ta có: \(\left(x+y\right)^2+\left(y+z\right)^4+.....+\left(x+z\right)^{100}\ge0\)còn \(-\left(y+z+x\right)\le0\)  nên phương trình 1 vô lý 

tương tự chứng minh phương trinh 2 và 3 vô lý 

vậy \(\hept{\begin{cases}x=\varnothing\\y=\varnothing\\z=\varnothing\end{cases}}\)

thực sự bài này mới nhìn vào thì đánh lừa người làm vì các phương trình rất phức tạp nhưng nếu nhìn kĩ lại thì nó rất dễ vì các trường hợp đều vô nghiệm

20 tháng 4 2020

\(\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}=-\left(y+z+x\right)\)

Đặt : \(A=\left(x+y\right)^2+\left(y+z\right)^4+...+\left(x+z\right)^{100}\)

Ta dễ dàng nhận thấy tất cả số mũ đều chẵn 

\(=>A\ge0\)(1)

Đặt : \(B=-\left(y+z+x\right)\)

\(=>B\le0\)(2)

Từ 1 và 2 \(=>A\ge0\le B\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=0\)

Do \(B=0< =>y+z+x=0\)(3)

\(A=0< =>\hept{\begin{cases}x+y=0\\y+z=0\\x+z=0\end{cases}}\)(4)

Từ 3 và 4 \(=>x=y=z=0\)

Vậy nghiệm của pt trên là : {x;y;z}={0;0;0}

22 tháng 10 2018

Vì \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\forall x\)

\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\forall x\)

\(\Rightarrow101x\ge0\)

\(\Rightarrow x\ge0\)

Từ điều kiện trên ta có :

\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)

\(100x+\frac{1+2+...+100}{101}=101x\)

\(101x-100x=\frac{5050}{101}\)

\(x=50\)

Vậy x = 50

22 tháng 10 2018

\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+....+\left|x+\frac{100}{101}\right|=101x\)

\(KĐ:101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)

\(x+\frac{1}{101}+x+\frac{2}{101}+....+x+\frac{100}{101}=101x\)

\(100x+\left(\frac{1}{101}+\frac{2}{101}+....+\frac{100}{101}\right)=101x\)

\(\Rightarrow101-100x=\frac{1+2+....+100}{101}\)

\(x=\frac{\left(1+100\right)\left(100-1+1\right):2}{101}\)

\(x=\frac{101.100:2}{101}\)

\(x=50\)

12 tháng 7 2017

a) (x-1)+(x-2)+(x-3)+...+(-100)=101

(x+x+x+...+x)-(1+2+3+...+100)=101

=> 100x-5050=101

100x=101+5050

100x=5151

x=5151:100

x=5151/100

22 tháng 7 2017

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3x+\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3x+\frac{3}{2}=1\)

\(\Leftrightarrow3x=-\frac{1}{2}\)

\(\Leftrightarrow x=-\frac{1}{2}\div3=-\frac{1}{6}\)

Sửa đề \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2}-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)

\(\Leftrightarrow x=99\)

22 tháng 7 2017

a) => ( x + 1/2 ) . 3 = 1

=> 3x + 3/2 = 1

=> 3x = 1 - 3/2

=> 3x = -1/2

=> x = -1/2 : 3 = -1/6

9 tháng 11 2017

        \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+.....+\frac{1}{\left(x+99\right)\left(x+100\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+.....+\frac{1}{x+99}-\frac{1}{x+100}\)

\(=\frac{1}{x}-\frac{1}{x+100}\)

9 tháng 11 2017

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{1}{x}-\frac{1}{x+100}=\frac{x+100-x}{x\left(x+100\right)}=\frac{100}{x\left(x+100\right)}\)

2 tháng 4 2023

1+1=3 :)))