Tính nhanh: \(\left(\frac{1}{11\times16}\right)+\left(\frac{1}{16\times21}\right)+\left(\frac{1}{21\times26}\right)+...+\left(\frac{1}{56\times61}\right)+\left(\frac{1}{61\times66}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A= dãy số trên.Ta có:
5A= \(\frac{5}{11x16}+\frac{5}{16x21}+...+\frac{5}{61x66}\)
=> 5A= \(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
=> 5A = \(\frac{1}{11}-\frac{1}{66}\)
=> 5A= \(\frac{5}{66}\)
=> A=\(\frac{1}{66}\)
\(=\frac{1}{5}\left(\frac{5}{11.16}\frac{5}{16.21}\frac{5}{21.26}+......+\frac{5}{61.66}\right)\)
\(=\frac{1}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{61}+\frac{1}{66}\right)\)
=\(\frac{1}{5}\left(\frac{1}{11}+\frac{1}{66}\right)\)
\(=\frac{1}{5}.\frac{7}{66}\)
\(=\frac{7}{330}\)
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
=2/3.5/6.9/10.14/15.20/21.27/28
=5/9.21/15.45/49
=7/9.45/49
=5/7
hơi dài dòng nhưng mong bạn tích đúng cho mk nha
\(\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)....\left(\frac{1}{81}-1\right)\left(\frac{1}{100}-1\right)\)
\(=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}....\frac{-80}{81}.\frac{-99}{100}\)
\(=\left[\left(-1\right).\left(-1\right)...\left(-1\right)\left(9\text{số (-1)}\right)\right].\frac{3}{4}.\frac{8}{9}....\frac{99}{100}\)
\(=\left(-1\right).\frac{1.3}{2.2}.\frac{2.4}{3.3}....\frac{9.11}{10.10}\)
\(=-\frac{1.11}{2.10}=-\frac{11}{10}\)
\(\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{81}-1\right)\left(\frac{1}{100}-1\right)\)
\(=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....\frac{-80}{81}.\frac{-99}{100}\)
\(=\left[\left(-1\right).\left(-1\right).\left(-1\right).\left(-1\right).\left(-1\right).\left(-1\right).\left(-1\right).\left(-1\right).\left(-1\right)\right].\frac{3}{4}.\frac{8}{9}.....\frac{99}{100}\)
\(=\left(-1\right).\frac{1.3}{2.2}.\frac{2.4}{3.3}....\frac{9.11}{10.10}\)
\(=-\frac{1.11}{2.10}=-\frac{11}{10}\)
\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{81}\right).\left(1-\frac{1}{100}\right)\)
\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{80}{81}.\frac{99}{100}\)
\(B=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{8.10}{9.9}.\frac{9.11}{10.10}\)
\(B=\frac{1.2.3...8.9}{2.3.4...9.10}.\frac{3.4.5...10.11}{2.3.4...9.10}\)
\(B=\frac{1}{10}.\frac{11}{2}\)
\(B=\frac{11}{20}>\frac{11}{21}\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)......\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
= \(-\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.......\frac{80}{81}.\frac{99}{100}\)
=\(-\frac{1.3.2.4.3.5..............8.10.9.11}{2^2.3^2.4^2.......10^2}=-\frac{\left(1.2.3.....9\right)\left(3.4.5....11\right)}{2.3.4....10.2.3.4.....10}=-\frac{11}{20}\)
\(\frac{1}{11\times16}+\frac{1}{16\times21}+\frac{1}{21\times26}+...+\frac{1}{56\times61}+\frac{1}{61\times66}\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\frac{5}{66}\)
\(=\frac{1}{66}\)
\(\frac{1}{11\times16}+\frac{1}{16\times21}+\frac{1}{21\times26}+...+\frac{1}{56\times61}+\frac{1}{61\times66}\)
\(=\frac{1}{5}\times\left(\frac{5}{11\times16}+\frac{5}{16\times21}+\frac{5}{21\times26}+...+\frac{5}{56\times61}+\frac{5}{61\times66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\frac{5}{66}=\frac{1}{66}\)