A= \(\frac{1}{2.32}+\frac{1}{3.33}+...+\frac{1}{\eta.\left(\eta+30\right)}+...+\frac{1}{1973.2003}\)
B= \(\frac{1}{2.1974}+\frac{1}{3.1975}+...+\frac{1}{\eta.\left(\eta+1972\right)}+...+\frac{1}{31.2003}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2.32}+\frac{1}{3.33}+...+\frac{1}{1973.2003}\)
\(=\frac{1}{30}\left(\frac{1}{2}-\frac{1}{32}+\frac{1}{3}-\frac{1}{33}+...+\frac{1}{1973}-\frac{1}{2003}\right)\)
\(=\frac{1}{30}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1973}-\frac{1}{32}-\frac{1}{33}-\frac{1}{2003}\right)\)
\(=\frac{1}{30}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}-\frac{1}{1974}-\frac{1}{1975}-...-\frac{1}{2003}\right)\)
\(B=\frac{1}{2.1974}+\frac{1}{3.1975}+...+\frac{1}{31.2003}\)
\(=\frac{1}{1972}\left(\frac{1}{2}-\frac{1}{1974}+\frac{1}{3}-\frac{1}{1975}+...+\frac{1}{31}-\frac{1}{2003}\right)\)
\(=\frac{1}{1972}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}-\frac{1}{1974}-\frac{1}{1975}-...-\frac{1}{2003}\right)\)
Vậy \(\frac{A}{B}=\frac{1972}{30}\)
\(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{1+\frac{1}{1+\frac{1}{3+\frac{1}{4}}}}\)
Vậy a=1;b=2;c=3;d=4
\(P=...\)
\(=\frac{1}{30}\left(\frac{30}{2.32}+\frac{30}{3.33}+...+\frac{30}{1973.2003}\right)\)
\(=\frac{1}{30}\left(\frac{1}{2}-\frac{1}{32}+\frac{1}{3}-\frac{1}{33}+...+\frac{1}{1973}-\frac{1}{2003}\right)\)
\(=\frac{1}{30}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1973}\right)-\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{2003}\right)\right]\)
\(=\frac{1}{30}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}\right)-\left(\frac{1}{1974}+\frac{1}{1975}+...+\frac{1}{2003}\right)\right]\)
\(Q=...\)
\(=\frac{1}{1972}\left(\frac{1972}{2.1974}+\frac{1972}{3.1975}+...+\frac{1}{31.2003}\right)\)
\(=\frac{1}{1972}\left(\frac{1}{2}-\frac{1}{1974}+\frac{1}{3}-\frac{1}{1975}+...+\frac{1}{31}-\frac{1}{2003}\right)\)
\(=\frac{1}{1972}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}\right)-\left(\frac{1}{1974}+\frac{1}{1975}+...+\frac{1}{2003}\right)\right]\)
Ta có: \(\frac{2n-2}{n-3}=\frac{2n-6+4}{n-3}\)
\(=\frac{2\left(n-3\right)+4}{n-3}=\frac{2\left(n-3\right)}{n-3}+\frac{4}{n-3}\)
\(=2+\frac{4}{n-3}\left(n\ne3\right)\)
ta co : \(\frac{2n-2}{n-3}=\frac{2\left(n-3\right)+4}{n-3}=\frac{2\left(n-3\right)}{n-3}+\frac{4}{n-3}=2+\frac{4}{n-3}\left(n\ne3\right)\)