So sánh
a) \(28^{34}và2^{66}.7^{34}\)
b) \(\left(-0,5\right)^{35}và\left(-0,5\right)^{37}\)
c) \(7^{99}+7^{100}+7^{101}và7^{102}\)
d) \(2^{27}và3^{18}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk doan la` de sai, sua: \(\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)
\(=\frac{3^7.\left(3^2-2^3\right)+2^{10}.\left(3^2-2^3\right)}{3^7.\left(3^3-2^2\right)+2^{10}.\left(3^3-2^2\right)}=\frac{3^7+2^{10}}{\left(3^7+2^{10}\right).24}=\frac{1}{24}\)
\(A=\dfrac{15}{34}+\dfrac{27}{21}+\dfrac{9}{34}-1\dfrac{15}{17}+\dfrac{2}{3}\)
\(A=\left(\dfrac{15}{34}+\dfrac{9}{34}-1\dfrac{15}{17}\right)+\left(\dfrac{27}{21}+\dfrac{2}{3}\right)\)
\(A=\left(\dfrac{15}{34}+\dfrac{9}{34}-\dfrac{32}{17}\right)+\left(\dfrac{27}{21}+\dfrac{2}{3}\right)\)
\(A=\left(\dfrac{15}{34}+\dfrac{9}{34}-\dfrac{64}{34}\right)+\left(\dfrac{27}{21}+\dfrac{14}{21}\right)\)
\(A=\dfrac{-20}{17}+\dfrac{41}{21}\)
\(A=\dfrac{-420}{357}+\dfrac{697}{357}=\dfrac{277}{357}\)
\(B=16\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)-28\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)\)
\(B=16\dfrac{2}{7}.\left(-\dfrac{5}{3}\right)-28\dfrac{2}{7}.\left(-\dfrac{5}{3}\right)\)
\(B=\left(-\dfrac{5}{3}\right)\left(16\dfrac{2}{7}-28\dfrac{2}{7}\right)\)
\(B=\left(-\dfrac{5}{3}\right)\left(-12\right)\)
\(B=20\)
\(1,\\ a,2< 3\Rightarrow2^{30}< 3^{30}\Rightarrow-2^{30}>-3^{30}\\ b,6^{10}=6^{2\cdot5}=\left(6^2\right)^5=36^5>35^5\left(36>35\right)\)
\(2,\\ a,\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\dfrac{3^{10}\cdot5^5\cdot3^5}{5^6\cdot3^{14}}=\dfrac{3}{5}\\ b,\left(8x-1\right)^{2x+1}=5^{2x+1}\\ \Leftrightarrow8x-1=5\\ \Leftrightarrow x=\dfrac{3}{4}\)
Bài 2:
a: Ta có: \(\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}\)
\(=\dfrac{-3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^{14}}\)
\(=-\dfrac{3}{5}\)
b: Ta có: \(\left(8x-1\right)^{2x+1}=5^{2x+1}\)
\(\Leftrightarrow8x-1=5\)
\(\Leftrightarrow8x=6\)
hay \(x=\dfrac{3}{4}\)
A = \(\frac{1}{2}-\frac{3}{4}+\frac{5}{6}-\frac{7}{12}\)
A = \(\left(-\frac{1}{4}\right)+\frac{5}{6}-\frac{7}{12}\)
A = \(\frac{7}{12}-\frac{7}{12}\)
A = \(0\).
Mình làm câu A thôi nhé.
Chúc bạn học tốt!
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
a) Ta có: 266 . 734 = 232 . 234 . 734 < (2.2.7)34 = 2834
Vậy 2834 > 266 . 734
Tương tự