Tính nhanh tổng A :
A =\(3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+...+100}\)
A = \(5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+..+100}\)
\(=5x\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)
\(=5x\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\right)\)
\(=2x5x\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)
\(=10x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{100x101}\right)\)
\(=10x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=10x\left(1-\frac{1}{101}\right)\)
\(=10x\frac{100}{101}\)
\(=\frac{1000}{101}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\left(1\right)\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\left(2\right)\)
Lấy (2) - (1) ta được:\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{100}}\right)\)
\(\Leftrightarrow2A=1-\frac{1}{3^{100}}\)
\(\Leftrightarrow A=\left(\frac{3^{100}-1}{3^{100}}\right):2\)
\(\Leftrightarrow A=\frac{3^{100}-1}{2.3^{100}}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)(1)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)(2)
Lấy (2) trừ đi (1) ta có :
\(2A=1-\frac{1}{3^{100}}\)
\(\Rightarrow A=\frac{\left(1-\frac{1}{3^{100}}\right)}{2}\)
A=(2/3+3/4+...+99/100)x(1/2+2/3+3/4+...+98/99)-(1/2+2/3+...+99/100)x(2/3+3/4+4/5+...98/99)
ta cho nó dài hơn như sau
A=(2/3+3/4+4/5+5/6+....+98/99+99/100)
ta thấy các mẫu số và tử số giống nhau nên chệt tiêu các số
2:3:4:5...99 vậy ta còn các số 2/100
ta làm vậy với(1/2+2/3+3/4+.....+98/99) thi con 1/99
làm vậy với câu (1/2+2/3+...+99/100) thì ra la 1/100
vậy với (2/3+3/4+...+98/99) ra 2/99
xùy ra ta có 2/100.1/99-1/100.2/99=1/50x1/99-1/100x2/99=tự tinh nhe mình ngủ đây
ta có 3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^{100}}\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)
\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+.....+\frac{3}{1+2+...+100}\)
\(=3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\)
\(=\frac{2}{2}.\left(3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\right)\)
\(=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)
\(=6.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(=6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=6.\left(1-\frac{1}{101}\right)\)
\(=6.\frac{100}{101}=\frac{600}{101}\)
Vậy \(A=\frac{600}{101}\)
\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)
\(A=\frac{3.2}{2}+\frac{3.2}{\left(1+2\right).2}+\frac{3.2}{\left(1+2+3\right).2}+...+\frac{3.2}{\left(1+2+...+100\right).2}\)
\(A=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)
\(A=\frac{6}{1.2}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)
\(A=6\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=6\cdot\left(1-\frac{1}{101}\right)=6\cdot\frac{100}{101}=\frac{600}{101}\)
Vay A = ........