So sánh:
a, 3111 và 1714
b, 52n và 25n ( n thuộc N )
c, 3500 và 7300
d, 85 và 3.47
e, 9920 và 999910
f, 202303 và 303202
g, 1010 và 48.505
h, 199010 + 19909 và 199110
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(2^{300}=8^{100}\)
\(3^{200}=9^{100}\)
mà 8<9
nên \(2^{300}< 3^{200}\)
b: \(3^{500}=243^{100}\)
\(7^{300}=343^{100}\)
mà 243<243
nên \(3^{500}< 7^{300}\)
Gọi 199010+19909 là A
Gọi 199110 là B
A=199010+19909=19909(1990+1)=19909.1991
B=199110=19919.1991
Vậy A<B
Bài 8:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\Rightarrow2^{225}< 3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
`3^(2 + n) và 2^(3 + n) `
`3^(2 + n) = 3^2 xx 3^n = 9 xx 3^n`
`2^(3 + n) = 2^3 xx 2^n = 8 xx 2^n`
ta thấy `9>8 ; 3^n > 2^n `
vậy `3^(2 + n) > 2^(3 + n) `
Lời giải:
a) $A-B=99.10^k-10^{k+2}-10^k=99.10^k-100.10^k-10^k$
$=10^k(99-100-1)=-2.10^k< 0$
$\Rightarrow A<b$
b) $99^{20}-9999^{10}=99^{20}-(99.101)^{10}$
$<99^{20}-(99.99)^{10}=99^{20}-99^{20}=0$
$\Rightarrow 99^{20}<9999^{10}$
a) 31^11<32^11=2^55<2^56=(2^4)^14=16^14<17^14
b) 5^2n=25^n<32^n=2^5n
c) 3^500=(3^5)^100=243^100
7^300=(7^3)^100=343^100
Có 243^100<343^100 nên 3^500<7^300
d)8^5=2^15=2^14.2
3.4^7=3.2^14
Có 2.2^14<3.2^14 nên 8^5<3.4^7
------------------Hok tốt------------------
a, Ta có :
3111 < 3211 = ( 25 )11 = 255 ( 1 )
1714 > 1614 = ( 24 )14 = 256 ( 2 )
Từ 1 và 2 => 3111 < 1714