K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cái này lớp 6 : 

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

<=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{2}{4026}=\frac{1}{2013}\)

\(\Leftrightarrow x+1=2013\)

=> x = 2012

1 tháng 6 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow1-\frac{2}{x+1}=\frac{2011}{2013}\)

\(\Rightarrow\frac{2}{x+1}=1-\frac{2011}{2013}\)

\(\Rightarrow\frac{2}{x+1}=\frac{2}{2013}\)

\(\Rightarrow x+1=2013\)

\(\Rightarrow x=2013-1\)

\(\Rightarrow x=2012\)

Vậy \(x=2012\)

~ Ủng hộ nhé 

I don't now

mik ko biết 

sorry 

......................

25 tháng 7 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow2\left(\frac{x-1}{2x+2}\right)=\frac{2011}{2013}\)

\(\Rightarrow\frac{x-1}{x+1}=\frac{2011}{2013}\)

\(\Rightarrow x-1=2011\Leftrightarrow x=2010\)

23 tháng 8 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)

\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{2013}:2\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2013}\)

\(\Rightarrow x+1=2013\)

\(\Rightarrow x=2013-1\)

\(\Rightarrow x=2012\)

23 tháng 8 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\) (1/3=2/6;...)

\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)

\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(1-\frac{2}{x+1}=\frac{2011}{2013}\)

\(\frac{2}{x+1}=\frac{2}{2013}\)

=> x + 1 = 2013

x = 2012

23 tháng 8 2019

1) Tính : 

a) \(\left(2008.2009.2010.2011\right).\left(1+\frac{1}{2}:\frac{2}{3}-\frac{4}{3}\right)\)

\(=\left(2008.2009.2010.2011\right).\left(1+\frac{1}{3}-\frac{4}{3}\right)\)

\(=\left(2008.2009.2010.2011\right).\left(\frac{4}{3}-\frac{4}{3}\right)\)

\(=\left(2008.2009.2010.2011\right).0\)

\(=0\)

2) Tìm x 

a) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{2013}:2\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2013}\)

\(\Rightarrow x+1=2013\)

\(\Rightarrow x=2012\)

b) \(\frac{1}{2}.\frac{1}{3}.\frac{1}{4}.\frac{1}{5}.\frac{1}{6}.\left(x-1,010\right)=\frac{1}{360}-\frac{1}{720}\)

\(\Rightarrow\frac{1}{2.3.4.5.6}.\left(x-1,01\right)=\frac{1}{720}\)

\(\Rightarrow\frac{1}{720}.\left(x-1,01\right)=\frac{1}{720}\)

\(\Rightarrow x-1,01=\frac{1}{720}:\frac{1}{720}\)

\(\Rightarrow x-1,01=1\)

\(\Rightarrow x=1+1,01\)

\(\Rightarrow x=2,01\)

26 tháng 8 2016

\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{2013}:2\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\frac{\left(x+1-2\right)}{2.\left(x+1\right)}=\frac{2011}{4026}\)

26 tháng 7 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

\(\Leftrightarrow1-\frac{2}{x+1}=\frac{2011}{2013}\)

\(\Leftrightarrow\frac{2}{x+1}=\frac{2}{2013}\)

\(\Leftrightarrow x+1=2013\)

\(\Leftrightarrow x=2012\)

Vậy \(x=2012\)

26 tháng 7 2018

\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.........+\frac{2}{x\left(x+1\right)}=1\frac{2003}{2005}\left(1\right)\)

\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+......+\frac{2}{x\left(x+1\right)}\)

\(=2.\left[\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{x\left(x+1\right)}\right]\)

\(=2.\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{x}-\frac{1}{x+1}\right]\)

\(=2.\left(1-\frac{1}{x+1}\right)\)

\(=2.\left(\frac{x+1}{x+1}-\frac{1}{x+1}\right)\)

\(=2.\frac{x}{x+1}\)

Thay vào ( 1 ) ta có :

\(\frac{2x}{x+1}=\frac{4008}{2005}\Rightarrow\frac{x}{x+1}=\frac{2004}{2005}\)

\(\Rightarrow2005x=2004\left(x+1\right)\Rightarrow2005x=2004.2004\)

\(\Rightarrow2005x=2004x=2004x\Rightarrow x=2004\)

KL : Vậy x = 2004

Đây là bài mẫu của mình bạn dựa theo rồi tự làm nhé