K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 6 2021

Lời giải:
Đặt $\sqrt[3]{x+1}=a;\sqrt[3]{x-1}=b$ thì pt trở thành:

\(\left\{\begin{matrix} a^2+b^2+ab=1\\ a^3-b^3=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2+ab+b^2=1\\ (a-b)(a^2+ab+b^2)=2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a^2+ab+b^2=1\\ a-b=2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} (a-b)^2+3ab=1\\ a-b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a(-b)=1\\ a+(-b)=2\end{matrix}\right.\)

Theo đl Viet đảo thì $a,-b$ là nghiệm của pt $X^2-2X+1=0$

$\Rightarrow a=-b=1$

$\Leftrightarrow \sqrt[3]{x+1}=1; \sqrt[3]{x-1}=-1$

$\Rightarrow x=0$

Vậy.........

31 tháng 5 2021

\(=>x^3=(\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)})^3\)

\(x^3=2\left(\sqrt{3}+1\right)-3.\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]^2.\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)

+\(3\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]^2\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]-2\left(\sqrt{3}-1\right)\)

\(x^3=\)

\(4-3\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)

\(x^3=4-3.\left[\sqrt[3]{4\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right].\)\(x\)

\(x^3=4-3\left[\sqrt[3]{4\left(3-1\right)}\right].x\)

\(x^3=4-3.2x\)

\(x^3=4-6x\)

thay \(x^3=4-6x\) vào A=>\(A=\left(4-6x+6x-5\right)^{2009}=\left(-1\right)^{2009}=-1\)

NV
26 tháng 7 2021

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+3}=u\ge0\\\sqrt{y+3}=v\ge0\end{matrix}\right.\) ta được:

\(\left\{{}\begin{matrix}u^2-2=\sqrt{v+2}\\v^2-2=\sqrt{u+2}\end{matrix}\right.\)

\(\Rightarrow u^2-v^2=\sqrt{v+2}-\sqrt{u+2}\)

\(\Leftrightarrow\left(u-v\right)\left(u+v\right)+\dfrac{u-v}{\sqrt{u+2}+\sqrt{v+2}}=0\)

\(\Leftrightarrow\left(u-v\right)\left(u+v+\dfrac{1}{\sqrt{u+2}+\sqrt{v+2}}\right)=0\)

\(\Leftrightarrow u-v=0\Leftrightarrow u=v\)

Thế vào pt đầu:

\(u^2-2=\sqrt{u+2}\)

Đặt \(\sqrt{u+2}=t>0\Rightarrow2=t^2-u\)

\(\Rightarrow u^2-\left(t^2-u\right)=t\)

\(\Rightarrow u^2-t^2+u-t=0\)

\(\Leftrightarrow\left(u-t\right)\left(u+t+1\right)=0\)

\(\Leftrightarrow u=t\Leftrightarrow u=\sqrt{u+2}\)

\(\Leftrightarrow u^2-u-2=0\Leftrightarrow u=2\)

\(\Leftrightarrow\sqrt{x+3}=2\Rightarrow x=y=1\)

13 tháng 8 2019

1. \(\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)

\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+7\right)}-3\sqrt{x+3}-2\sqrt{x+7}+6=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+7}-3\right)-2\left(\sqrt{x+7}-3\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+7}-3\right)\left(\sqrt{x+3}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+7}-3=0\\\sqrt{x+3}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+7}=3\\\sqrt{x+3}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Vậy...

2. \(2x^2+2x+1=\sqrt{4x+1}\)

\(\Leftrightarrow2x^2+2x+1-\sqrt{4x+1}=0\)

\(\Leftrightarrow4x^2+4x+2-2\sqrt{4x+1}=0\)

\(\Leftrightarrow4x+1-2\sqrt{4x+1}+1+4x^2=0\)

\(\Leftrightarrow\left(\sqrt{4x+1}-1\right)^2+4x^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+1}=1\\2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}4x+1=1\\x=0\end{matrix}\right.\)\(\Leftrightarrow x=0\)

Vậy...

13 tháng 8 2019

3. \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=\frac{x+3}{2}\)

\(\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=\frac{x+3}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}=\frac{x+3}{2}\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1=\frac{x+3}{2}\)

Đặt \(\sqrt{x-1}=a\)

\(\Leftrightarrow x-1=a^2\Leftrightarrow x+3=a^2+4\)

\(pt\Leftrightarrow\left|a-1\right|+a+1=\frac{a^2+4}{2}\)

+) Xét \(a\le1\Leftrightarrow a-1\le0\Leftrightarrow1\le x\le2\)

\(pt\Leftrightarrow1-a+a+1=\frac{a^2+4}{2}\)

\(\Leftrightarrow2=\frac{a^2+4}{2}\)

\(\Leftrightarrow a^2+4=4\)

\(\Leftrightarrow a=0\)

\(\Leftrightarrow\sqrt{x-1}=0\)

\(\Leftrightarrow x=1\) ( thỏa )

+) Xét \(a\ge1\Leftrightarrow a-1\ge0\Leftrightarrow x>2\)

\(pt\Leftrightarrow a-1+a+1=\frac{a^2+3}{2}\)

\(\Leftrightarrow2a=\frac{a^2+3}{2}\)

\(\Leftrightarrow a^2+3=4a\)

\(\Leftrightarrow a^2-4a+3=0\)

\(\Leftrightarrow\left(a-1\right)\left(a-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(loai\right)\\x=10\left(thoa\right)\end{matrix}\right.\)

Vậy...

4 tháng 4 2020
https://i.imgur.com/SHWgpjL.jpg
22 tháng 8 2019

b, \(\sqrt[3]{24+x}+\sqrt{12-x}=6\) (đk \(-24\le x\le12\)) (*)

Đặt \(\sqrt[3]{24+x}=a\) , \(\sqrt{12-x}=b\left(b\ge0\right)\)

\(a^3+b^2=24+x+12-x=36\)(1)

a+b=6 => b=6-a

Thay b=6-a vào (1) có:

\(a^3+\left(6-a\right)^2=36\)

<=> \(a^3+a^2-12a+36=36\)

<=> \(a^3+a^2-12a=0\)

<=> \(a\left(a^2+a-12\right)=0\)

<=> \(a\left(a^2-3a+4a-12\right)=0\)

<=> \(a\left(a+4\right)\left(a-3\right)=0\)

=>\(\left[{}\begin{matrix}a=0\\a=-4\\a=3\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}24+x=0\\24+x=-4^3=-64\\24+x=3^3=27\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=-24\\x=-88\\x=3\end{matrix}\right.\)(tm pt(*))

Vậy pt (*) có tập nghiệm \(S=\left\{-24,-88,3\right\}\)

22 tháng 8 2019

đk chỉ có x\(\le12\) nha