Cho x= a-5/a ( a khác 0 ) Tìm a thuộc Z để x thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
\(a)\)
\(\text{Để A có giá trị nguyên: }\)
\(\frac{9}{x-4}\in Z\)
\(x-4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\rightarrow x\in\left\{1;3;\pm5;7;13\right\}\)
\(b)\)
\(\text{Để A có giá trị lớn nhất: }\)
\(\frac{9}{x-4}\)\(\text{lớn nhất}\)
\(x-4=1\)
\(x=5\)
\(c)\)
\(\text{Để A đạt giá trị nhỏ nhất:}\)
\(\frac{9}{x-4}\)\(\text{nhỏ nhất}\)
\(x-4=-1\)
\(x=3\)
Cho \(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\left(ĐK:x\in Z,x\ne4\right)\)
Để A nguyên \(\Rightarrow9⋮x-4\)hay \(x-4\inƯ\left(9\right)\)
Ta có \(x-4\inƯ\left(9\right)\in\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)
b, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{max}\)khi \(B_{max}\)
Vì \(9>0\)để B đặt GTLN \(\Rightarrow\hept{\begin{cases}x-4>0\\\left(x-4\right)_{min}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4=1\)
\(\Rightarrow x=5\)
\(\Rightarrow B_{max}=\frac{9}{5-4}=9\)
\(\Rightarrow A_{max}=1+9=10\)khi \(x=5\)
c, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{min}\)khi \(B_{min}\)
Vì \(9>0\)để B đạt GTNN \(\Rightarrow\hept{\begin{cases}x-4< 0\\\left(x-4\right)_{max}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4\in Z\)
\(\Rightarrow x-4=-1\)
\(\Rightarrow x=3\)
\(\Rightarrow B_{min}=\frac{9}{3-4}=-9\)
\(\Rightarrow A_{min}=1+\left(-9\right)=\left(-8\right)\)khi \(x=3\)
a) Để A = 0 thì \(x-7=0\Leftrightarrow x=7\)( thỏa mãn ĐKXĐ )
Để A > 0 thì có 2 trường hợp :
+) TH1 : \(\hept{\begin{cases}x-7>0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x>-4\end{cases}\Leftrightarrow}x>7}\)
+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x< -4\end{cases}}}\Leftrightarrow x< -4\)
Để A < 0 thì có 2 trường hợp :
+) TH1: \(\hept{\begin{cases}x-7>0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x< -4\end{cases}\Leftrightarrow}7< x< -4\left(\text{vô lí}\right)}\)
+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x>-4\end{cases}\Leftrightarrow}-4< x< 7}\)
b) Để A thuộc Z thì x -7 ⋮ x + 4
<=> x + 4 - 11 ⋮ x + 4
Vì x + 4 ⋮ x + 4
=> 11 ⋮ x + 4
=> x + 4 thuộc Ư(11) = { 1; 11; -1; -11 }
=> x thuộc { -3; 7; -5; -15 }
Vậy...........
Gọi ƯCLN(2n + 1 ; 3n + 2)=d
Nếu ta c/m d = 1 thì \(\frac{2n+1}{3n+2}\) là p/s tối giản
ta có 2n + 1 chia hết cho d => 3(2n + 1) chia hết cho d <=> 6n + 3 chia hết cho d
3n + 2 chia hết cho d => 2(3n + 2) chia hết cho d <=> 6n + 4 chia hết cho d
Vậy (6n + 4) - (6n + 3) chia hết cho d => 1 chia hết cho d (dpcm)
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
Để \(1+\frac{7}{n-5}\) là số nguyên <=> \(\frac{7}{n-5}\) là số nguyên
=> n - 5 \(\in\) Ư(7) = { - 7; - 1 ; 1 ; 7 }
=> n - 5 = { - 7; - 1 ; 1 ; 7 }
=> n = { - 2; 4; 6; 12 }
a. Ta có \(A=\frac{3\sqrt{x}}{\sqrt{x}-3}=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}-3}+\frac{9}{\sqrt{x}-3}\)
\(=3+\frac{9}{\sqrt{x}-3}\)
\(A\in Z\Rightarrow\sqrt{x}-3\inƯ\left(9\right)\Rightarrow\sqrt{x}-3\in\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{0;2;4;6;12\right\}\Rightarrow x\in\left\{0;4;16;36;144\right\}\)
Vậy \(x\in\left\{0;4;16;36;144\right\}\)thì \(A\in Z\)
b. Thay \(x=7-4\sqrt{3}\Rightarrow A=\frac{3\sqrt{7-4\sqrt{3}}}{\sqrt{7-4\sqrt{3}}-3}\)
\(=\frac{3\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2-\sqrt{3}\right)^2}-3}=\frac{3\left(2-\sqrt{3}\right)}{2-\sqrt{3}-3}=\frac{15-9\sqrt{3}}{2}\)
A=n+2/n-5=n-5+7/n-5=n-5/n-5+7/n-5=1+7/n-5
do7chia hết cho n-5=>n-5 thuộc Ư(7)
=>n-5={-7;-1;1;7}=>n={-2;4;6;12}
Để \(x\inℤ\) thì \(\frac{a-5}{a}\inℤ\)
Ta có: \(\frac{a-5}{a}=\frac{a}{a}-\frac{5}{a}=1-\frac{5}{a}\)
Để \(\frac{a-5}{a}\inℤ\) thì \(\frac{5}{a}\inℤ\)
\(\Rightarrow a\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trả lời:
Ta có: \(x=\frac{a-5}{a}\)\(=\frac{a}{a}-\frac{5}{a}=1-\frac{5}{a}\)
Để \(x\inℤ\)thì \(\frac{5}{a}\inℤ\)
\(\Rightarrow5⋮a\)hay \(a\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Vậy \(a\in\left\{\pm1;\pm5\right\}\)thì \(x\inℤ\)