Phân tích đa thức thành nhân tử :x3-19x+30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^3-19x-30
=x^3-25x+6x-30
=x(x^2-25)+6(x-5)
=x(x+5)(x-5)+6(x-5)
=(x-5)(x^2+5x+6)
=(x-5)(x^2+2x+3x+6)
=(x-5)[x(x+2)+3(x+2)]
=(x-5)(x+2)(x+3)
Ta có: \(x^2-19x-30=\frac{4x^2-76x-120}{4}\)
\(=\frac{1}{4}.\left[\left(4x^2-76x+361\right)-481\right]\)
\(=\frac{1}{4}.\left[\left(2x-19\right)^2-481\right]\)
\(=\frac{1}{4}.\left(2x-19-\sqrt{481}\right).\left(2x-19+\sqrt{481}\right)\)
Nghiệm xấu nên phân tích khó :) Sửa thành x3 - 19x - 30 cho dễ
x3 - 19x - 30
= x3 + 3x2 - 3x2 - 9x - 10x - 30
= ( x3 + 3x2 ) - ( 3x2 + 9x ) - ( 10x + 30 )
= x2( x + 3 ) - 3x( x + 3 ) - 10( x + 3 )
= ( x + 3 )( x2 - 3x - 10 )
= ( x + 3 )( x2 + 2x - 5x - 10 )
= ( x + 3 )[ x( x + 2 ) - 5( x + 2 ) ]
= ( x + 3 )( x + 2 )( x - 5 )
1a) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(a,=-\left(x-1\right)^3\left[=\left(1-x\right)^3\right]\\ b,=\left(1-x\right)^3\)
a) \(3x^2-6xy=3x\left(x-2y\right)\)
b) \(x^3-6x^2+9x=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)
c) \(=x\left(x-2y\right)-3\left(x-2y\right)=\left(x-2y\right)\left(x-3\right)\)
d) \(=2x\left(3x-5\right)-3\left(3x-5\right)=\left(3x-5\right)\left(2x-3\right)\)
\(a,=3x\left(x-2y\right)\\ b,=x\left(x-3\right)^2\\ c,Sửa:x^2-2xy-3x+6y=x\left(x-2y\right)-3\left(x-2y\right)=\left(x-2y\right)\left(x-3\right)\\ d,=\left(3x-5\right)\left(2x-3\right)\)
\(6x^2-19x+15=6x^2-9x-10x+15\)
\(=3x\left(2x-3\right)-5\left(2x-3\right)\)
\(=\left(3x-5\right)\left(2x-3\right)\)
\(x^3-19x-30=x^3+2x^2-2x^2-4x-15x-30\)
\(=x^2\left(x+2\right)-2x\left(x+2\right)-15\left(x+2\right)\)
\(=\left(x^2-2x-15\right)\left(x+2\right)\)
\(=\left[x^2-5x+3x-15\right]\left(x+2\right)\)
\(=\left[x\left(x-5\right)+3\left(x-5\right)\right]\left(x+2\right)\)
\(=\left(x+3\right)\left(x-5\right)\left(x+2\right)\)
\(5x^2-19x-4=5x^2-20x+x-4\)
\(=\left(5x^2-20x\right)+\left(x-4\right)\)
\(=5x\left(x-4\right)+\left(x-4\right)\)
\(=\left(5x-1\right)\left(x-4\right)\)
= 5x^2 + x - 20x - 4
= (5x^2 + x) - (20x + 4)
= x(5x+1) - 4 (5x + 1)
= (5x+1) (x - 4)
\(x^2-x-6=x^2+2x-3x-6=x\left(x+2\right)-3\left(x+2\right)=\left(x-3\right)\left(x+2\right)\)
\(x^3-19x-30=x^3+6x-25x-30=x\left(x^2-25\right)+6x-30=x\left(x^2-25\right)+6\left(x-5\right)\)
\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)=\left(x-5\right)\left[\left(x\right)\left(x+5\right)+6\right]\)